Do you want to publish a course? Click here

Competition and coexistence of antiferromagnetism and superconductivity in RBa_2Cu_3O_{6+x} (R = Lu, Y) single crystals

417   0   0.0 ( 0 )
 Added by Alexander Lavrov
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use c-axis resistivity and magnetoresistance measurements to study the interplay between antiferromagnetic (AF) and superconducting (SC) ordering in underdoped RBa_2Cu_3O_{6+x} (R = Lu, Y) single crystals. Both orders are found to emerge from an anisotropic 3D metallic state, upon which antiferromagnetism opposes superconductivity by driving the doped holes towards localization. Despite the competition, the superconductivity sets in before the AF order is completely destroyed and coexists with latter in a certain range of hole doping. We find also that strong magnetic fields affect the AF-SC interplay by both suppressing the superconductivity and stabilizing the Neel order.



rate research

Read More

The remarkable sensitivity of the c-axis resistivity and magnetoresistance in cuprates to the spin ordering is used to clarify the doping-induced transformation from an antiferromagnetic (AF) insulator to a superconducting (SC) metal in RBa_2Cu_3O_{6+x} (R = Lu, Y) single crystals. The established phase diagram demonstrates that the AF and SC regions apparently overlap: the superconductivity in RBa_2Cu_3O_{6+x}, in contrast to La_{2-x}Sr_xCuO_4, sets in before the long-range AF order is completely destroyed by hole doping. Magnetoresistance measurements of superconducting crystals with low T_c<15-20 K give a clear view of the magnetic-field induced superconductivity suppression and recovery of the long-range AF state. What still remains to be understood is whether the AF order actually persists in the SC state or just revives when the superconductivity is suppressed, and, in the former case, whether the antiferromagnetism and superconductivity reside in nanoscopically separated phases or coexist on an atomic scale.
156 - M.H. Fang , B. Qian , H.M. Pham 2008
We have synthesized polycrystalline samples and single crystals of Fe(Te1-xSx)y, and characterized their properties. Our results show that the solid solution of S in this system is limited, < 30%. We observed superconductivity at ~ 9 K in both polycrystalline samples Fe(Te1-xSx)y with 0< x <= 0.3 and 0.86 <= y <= 1.0, and single crystals with the composition Fe(Te0.9S0.1)0.91, consistent with the recent report of Tc ~ 10 K superconductivity in the FeTe1-xSx polycrystalline samples with x = 0.1 and 0.2. Furthermore, our systematic studies show that the superconducting properties of this system sensitively depend on excess Fe at interstitial sites and that the excess Fe suppresses superconductivity. Another important observation from our studies is the coexistence of the superconducting phase and antiferromagnetism. Our analyses suggest that this phase coexistence may be associated with the random distribution of excess Fe and possibly occurs in the form of electronic inhomogeneity.
111 - Jia Yu , Congcong Le , Zhiwei Li 2021
Materials with exceptional magnetism and superconductivity usually conceive emergent physical phenomena. Here, we investigate the physical properties of the (Eu,La)FeAs2 system with double magnetic sublattices. The parent EuFeAs2 shows anisotropy-associated magnetic behaviors, such as Eu-related moment canting and exchange bias. Through La doping, the magnetic anisotropy is enhanced with ferromagnetism of Eu2+ realized in the overdoped region, and a special exchange bias of the superposed ferromagnetic/superconducting loop revealed in Eu0.8La0.2FeAs2. Meanwhile, the Fe-related antiferromagnetism shows unusual robustness against La doping. Theoretical calculation and 57Fe Mossbauer spectroscopy investigation reveal a doping-tunable dual itinerant/localized nature of the Fe-related antiferromagnetism. Coexistence of the Eu-related ferromagnetism, Fe-related robust antiferromagnetism, and superconductivity is further revealed in Eu0.8La0.2FeAs2, providing a platform for further exploration of potential applications and emergent physics. Finally, an electronic phase diagram is established for (Eu,La)FeAs2 with the whole superconducting dome adjacent to the Fe-related antiferromagnetic phase, which is of benefit for seeking underlying clues to high-temperature superconductivity.
Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe ($T_{rm Curie} sim 2.5$ K and $T_{rm SC}$ $sim$ 0.6 K) is reported from $^{59}$Co nuclear quadrupole resonance (NQR). The $^{59}$Co-NQR signal below 1 K indicates ferromagnetism throughout the sample volume, while nuclear spin-lattice relaxation rate $1/T_1$ in the ferromagnetic (FM) phase decreases below $T_{rm SC}$ due to the opening of the superconducting(SC) gap. The SC state was found to be inhomogeneous, suggestive of a self-induced vortex state, potentially realizable in a FM superconductor. In addition, the $^{59}$Co-NQR spectrum around $T_{rm Curie}$ show that the FM transition in UCoGe possesses a first-order character, which is consistent with the theoretical prediction that the low-temperature FM transition in itinerant magnets is generically of first-order.
220 - P. Richard , M. Neupane , Y.-M. Xu 2007
We have performed a systematic angle-resolved photoemission study of as-grown and oxygen-reduced Pr$_{2-x}$Ce$_x$CuO$_4$ and Pr$_{1-x}$LaCe$_{x}$CuO$_4$ electron-doped cuprates. In contrast to the common belief, neither the band filling nor the band parameters are significantly affected by the oxygen reduction process. Instead, we show that the main electronic role of the reduction process is to remove an anisotropic leading edge gap around the Fermi surface. While the nodal leading edge gap is induced by long-range antiferomagnetic order, the origin of the antinodal one remains unclear.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا