Do you want to publish a course? Click here

Microscopic Coexistence of Ferromagnetism and Superconductivity in Single-Crystal UCoGe

180   0   0.0 ( 0 )
 Added by Kenji Ishida
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe ($T_{rm Curie} sim 2.5$ K and $T_{rm SC}$ $sim$ 0.6 K) is reported from $^{59}$Co nuclear quadrupole resonance (NQR). The $^{59}$Co-NQR signal below 1 K indicates ferromagnetism throughout the sample volume, while nuclear spin-lattice relaxation rate $1/T_1$ in the ferromagnetic (FM) phase decreases below $T_{rm SC}$ due to the opening of the superconducting(SC) gap. The SC state was found to be inhomogeneous, suggestive of a self-induced vortex state, potentially realizable in a FM superconductor. In addition, the $^{59}$Co-NQR spectrum around $T_{rm Curie}$ show that the FM transition in UCoGe possesses a first-order character, which is consistent with the theoretical prediction that the low-temperature FM transition in itinerant magnets is generically of first-order.



rate research

Read More

111 - Jia Yu , Congcong Le , Zhiwei Li 2021
Materials with exceptional magnetism and superconductivity usually conceive emergent physical phenomena. Here, we investigate the physical properties of the (Eu,La)FeAs2 system with double magnetic sublattices. The parent EuFeAs2 shows anisotropy-associated magnetic behaviors, such as Eu-related moment canting and exchange bias. Through La doping, the magnetic anisotropy is enhanced with ferromagnetism of Eu2+ realized in the overdoped region, and a special exchange bias of the superposed ferromagnetic/superconducting loop revealed in Eu0.8La0.2FeAs2. Meanwhile, the Fe-related antiferromagnetism shows unusual robustness against La doping. Theoretical calculation and 57Fe Mossbauer spectroscopy investigation reveal a doping-tunable dual itinerant/localized nature of the Fe-related antiferromagnetism. Coexistence of the Eu-related ferromagnetism, Fe-related robust antiferromagnetism, and superconductivity is further revealed in Eu0.8La0.2FeAs2, providing a platform for further exploration of potential applications and emergent physics. Finally, an electronic phase diagram is established for (Eu,La)FeAs2 with the whole superconducting dome adjacent to the Fe-related antiferromagnetic phase, which is of benefit for seeking underlying clues to high-temperature superconductivity.
Coexistence of a new-type antiferromagnetic (AFM) state, the so-called hedgehog spin-vortex crystal (SVC), and superconductivity (SC) is evidenced by $^{75}$As nuclear magnetic resonance study on single-crystalline CaK(Fe$_{0.951}$Ni$_{0.049}$)$_4$As$_4$. The hedgehog SVC order is clearly demonstrated by the direct observation of the internal magnetic induction along the $c$ axis at the As1 site (close to K) and a zero net internal magnetic induction at the As2 site (close to Ca) below an AFM ordering temperature $T_{rm N}$ $sim$ 52 K. The nuclear spin-lattice relaxation rate 1/$T_1$ shows a distinct decrease below $T_{rm c}$ $sim$ 10 K, providing also unambiguous evidence for the microscopic coexistence. Furthermore, based on the analysis of the 1/$T_1$ data, the hedgehog SVC-type spin correlations are found to be enhanced below $T$ $sim$ 150 K in the paramagnetic state. These results indicate the hedgehog SVC-type spin correlations play an important role for the appearance of SC in the new magnetic superconductor.
292 - T. Hattori , Y. Ihara , Y. Nakai 2011
From detailed angle-resolved NMR and Meissner measurements on a ferromagnetic (FM) superconductor UCoGe (T_Curie ~ 2.5 K and T_SC ~ 0.6 K), we show that superconductivity in UCoGe is tightly coupled with longitudinal FM spin fluctuations along the c axis. We found that magnetic fields along the c axis (H || c) strongly suppress the FM fluctuations and that the superconductivity is observed in the limited magnetic field region where the longitudinal FM spin fluctuations are active. These results combined with model calculations strongly suggest that the longitudinal FM spin fluctuations tuned by H || c induce the unique spin-triplet superconductivity in UCoGe. This is the first clear example that FM fluctuations are intimately related with superconductivity.
We show the observation of the coexistence of bulk superconductivity and ferromagnetism in CeO1-xFxBiS2(x = 0 - 1.0) prepared by annealing under high-pressure. In CeO1-xFxBiS2 system, both superconductivity and two types of ferromagnetism with respective magnetic transition temperatures of 4.5 K and 7.5 K are induced upon systematic F substitution. This fact suggests that carriers generated by the substitution of O by F are supplied to not only the BiS2 superconducting layers but also the CeO blocking layers. Furthermore, the highest superconducting transition temperature is observed when the ferromagnetism is also enhanced, which implies that superconductivity and ferromagnetism are linked to each other in the CeO1-xFxBiS2 system.
119 - S. Nandi , W. T. Jin , Y. Xiao 2014
The magnetic structure of the Eu2+ moments in the superconducting EuFe2(As1-xPx)2 sample with x = 0.15 has been determined using element specific x-ray resonant magnetic scattering. Combining magnetic, thermodynamic and scattering measurements, we conclude that the long range ferromagnetic order of the Eu2+ moments aligned primarily along the c axis coexists with the bulk superconductivity at zero field. At an applied magnetic field >= 0.6 T, superconductivity still coexists with the ferromagnetic Eu2+ moments which are polarized along the field direction. We propose a spontaneous vortex state for the coexistence of superconductivity and ferromagnetism in EuFe2(As0.85P0.15)2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا