Do you want to publish a course? Click here

Magnetic-field induced superconductor-antiferromagnet transition in lightly doped RBa_2Cu_3O_{6+x} (R = Lu, Y) crystals

435   0   0.0 ( 0 )
 Added by Alexander Lavrov
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The remarkable sensitivity of the c-axis resistivity and magnetoresistance in cuprates to the spin ordering is used to clarify the doping-induced transformation from an antiferromagnetic (AF) insulator to a superconducting (SC) metal in RBa_2Cu_3O_{6+x} (R = Lu, Y) single crystals. The established phase diagram demonstrates that the AF and SC regions apparently overlap: the superconductivity in RBa_2Cu_3O_{6+x}, in contrast to La_{2-x}Sr_xCuO_4, sets in before the long-range AF order is completely destroyed by hole doping. Magnetoresistance measurements of superconducting crystals with low T_c<15-20 K give a clear view of the magnetic-field induced superconductivity suppression and recovery of the long-range AF state. What still remains to be understood is whether the AF order actually persists in the SC state or just revives when the superconductivity is suppressed, and, in the former case, whether the antiferromagnetism and superconductivity reside in nanoscopically separated phases or coexist on an atomic scale.



rate research

Read More

We use c-axis resistivity and magnetoresistance measurements to study the interplay between antiferromagnetic (AF) and superconducting (SC) ordering in underdoped RBa_2Cu_3O_{6+x} (R = Lu, Y) single crystals. Both orders are found to emerge from an anisotropic 3D metallic state, upon which antiferromagnetism opposes superconductivity by driving the doped holes towards localization. Despite the competition, the superconductivity sets in before the AF order is completely destroyed and coexists with latter in a certain range of hole doping. We find also that strong magnetic fields affect the AF-SC interplay by both suppressing the superconductivity and stabilizing the Neel order.
We present a study of the magnetic susceptibility in carefully detwinned La_{2-x}Sr_{x}CuO_4 single crystals in the lightly-doped region (x=0-0.03), which demonstrates a remarkable in-plane anisotropy of the spin system. This anisotropy is found to persist after the long-range antiferromagnetic (AF) order is destroyed by hole doping, suggesting that doped holes break the AF order into domains in which the spin alignment is kept essentially intact. It turns out that the freezing of the spins taking place at low temperatures is also notably anisotropic, implying that the spin-glass feature is governed by the domain structure as well.
We have studied the chemical potential shift in the high-temperature superconductor Bi$_2$Sr$_2$Ca$_{1-x}${it R}$_{x}$Cu$_2$O$_{8+y}$ ({it R} = Pr, Er), where the hole concentration is varied from 0.025 to 0.17 per Cu, by precise measurements of core-level photoemission spectra. The result shows that the shift becomes slow in the underdoped region as in the case of La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO) but the effect is much weaker than in LSCO. The observed shift in the present system can be relatively well explained by numerical results on the doped two-dimensional Hubbard model, and suggests that the change of the electronic structure induced by hole doping is less influenced by stripe fluctuations than in LSCO.
Resistivity and magnetization measurements are used for studying the transverse sliding of AF domain boundaries in lightly doped La_{2-x}Sr_{x}CuO_{4}. We discuss that it is the freezing of the transverse boundary motion that is responsible for the appearance of ``spin-glass features at low temperatures.
74 - Yan Gao , Peng-Jie Guo , Kai Liu 2021
Topological properties and topological superconductivity in real materials have attracted intensive experimental and theoretical attention recently. Based on symmetry analysis and first-principles electronic structure calculations, we predict that $R$RuB$_{2}$ ($R$=Y, Lu) are not only topological superconductor (TSC) candidates, but also own the hybrid hourglass-type Dirac ring which is protected by the nonsymmorphic space group symmetry. Due to the band inversion around the time-reversal invariant $Gamma$ point in the Brillouin zone,$R$RuB$_{2}$ also have Dirac topological surface states (TSSs). More importantly, their TSSs on the (010) surface are within the band gap of bulk and cross the Fermi level, which form single Fermi surfaces. Considering the fact that both YRuB$_{2}$ and LuRuB$_{2}$ are superconductors with respective superconducting transition temperatures ($T_c$) of 7.6 K and 10.2 K, the superconducting bulks will likely induce superconductivity in the TSSs via the proximity effect. The ternary borides $R$RuB$_{2}$ may thus provide a very promising platform for studying the properties of topological superconductivity and hourglass fermions in the future experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا