Do you want to publish a course? Click here

Exploring the Chemical Composition and Double Horizontal Branch of the Bulge Globular Cluster NGC 6569

136   0   0.0 ( 0 )
 Added by Christian Johnson
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract



rate research

Read More

121 - S. Saracino 2019
We used high-resolution optical HST/WFC3 and multi-conjugate adaptive optics assisted GEMINI GeMS/GSAOI observations in the near-infrared to investigate the physical properties of the globular cluster NGC 6569 in the Galactic bulge. We have obtained the deepest purely NIR color-magnitude diagram published so far for this cluster using ground-based observations, reaching $K_{s}$ $approx$ 21.0 mag (two magnitudes below the main-sequence turn-off point). By combining the two datasets secured at two different epochs, we determined relative proper motions for a large sample of individual stars in the center of NGC 6569, allowing a robust selection of cluster member stars. Our proper motion analysis solidly demonstrates that, despite its relatively high metal content, NGC 6569 hosts some blue horizontal branch stars. A differential reddening map has been derived in the direction of the system, revealing a maximum color excess variation of about $delta E(B-V)$ $sim$ 0.12 mag in the available field of view. The absolute age of NGC 6569 has been determined for the first time. In agreement with the other few bulge globular clusters with available age estimates, NGC 6569 turns out to be old, with an age of about 12.8 Gyr, and a typical uncertainty of 0.8-1.0 Gyr.
We present chemical abundances for 17 elements in a sample of 11 red giant branch stars in NGC 6362 from UVES spectra. NGC 6362 is one of the least massive globulars where multiple populations have been detected, yet its detailed chemical composition has not been investigated so far. NGC 6362 turns out to be a metal-intermediate ([Fe/H]=-1.07pm0.01 dex) cluster, with its alpha- and Fe-peak elements content compatible with that observed in clusters with similar metallicity. It also displays an enhancement in its s-process element abundances. Among the light elements involved in the multiple populations phenomenon, only [Na/Fe] shows star-to-star variations, while [Al/Fe] and [Mg/Fe] do not show any evidence for abundance spreads. A differential comparison with M4, a globular cluster with similar mass and metallicity, reveals that the two clusters share the same chemical composition. This finding suggests that NGC 6362 is indeed a regular cluster, formed from gas that has experienced the same chemical enrichment of other clusters with similar metallicity.
We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high resolution (R > 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km/s (sigma = 8.6 km/s), NGC 6366 has a heliocentric radial velocity of -122.3 km/s (sigma = 1.5 km/s), and that both clusters have nearly identical metallicities ([Fe/H] ~ -0.55). NGC 6366 shows evidence of a moderately extended O-Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O-Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display alpha and Fe-peak element abundance patterns that are typical of other metal-rich ([Fe/H] > -1) inner Galaxy clusters. However, the median [La/Fe] abundance may vary from cluster-to-cluster.
234 - M. Catelan 2009
It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is the rule, rather than the exception, among globular star clusters. An important prediction of this helium enhancement scenario is that the helium-enhanced blue horizontal branch (HB) stars should be brighter than the red HB stars which are not helium-enhanced. In this Letter, we test this prediction in the case of the Galactic globular cluster M3 (NGC 5272), for which the helium-enhancement scenario predicts helium enhancements of > 0.02 in virtually all blue HB stars. Using high-precision Stroemgren photometry and spectroscopic gravities for blue HB stars, we find that any helium enhancement among most of the clusters blue HB stars is very likely less than 0.01, thus ruling out the much higher helium enhancements that have been proposed in the literature.
We present the results obtained from the UV photometry of the globular cluster NGC 1261 using Far-UV (FUV) and Near-UV (NUV) images acquired with the Ultraviolet Imaging Telescope (UVIT) onboard the Astrosat satellite. We utilized the UVIT data combined with HST, GAIA, and ground-based optical photometric data to construct the different UV colour-magnitude diagrams (CMDs). We detected blue HB (BHB), and two extreme HB (EHB) stars in FUV, whereas full HB, i.e., red HB (RHB), BHB as well as EHB is detected in NUV CMDs. The 2 EHB stars, identified in both NUV and FUV, are confirmed members of the cluster. The HB stars form a tight sequence in UV-optical CMDs, which is almost aligned with Padova isochrones. This study sheds light on the significance of UV imaging to probe the HB morphology in GCs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا