Do you want to publish a course? Click here

Astronomical photonics in the context of infrared interferometry and high-resolution spectroscopy

78   0   0.0 ( 0 )
 Added by Lucas Labadie
 Publication date 2016
  fields Physics
and research's language is English
 Authors Lucas Labadie




Ask ChatGPT about the research

We review the potential of Astrophotonics, a relatively young field at the interface between photonics and astronomical instrumentation, for spectro-interferometry. We review some fundamental aspects of photonic science that drove the emer- gence of astrophotonics, and highlight the achievements in observational astrophysics. We analyze the prospects for further technological development also considering the potential synergies with other fields of physics (e.g. non-linear optics in condensed matter physics). We also stress the central role of fiber optics in routing and transporting light, delivering complex filters, or interfacing instruments and telescopes, more specifically in the context of a growing usage of adaptive optics.



rate research

Read More

142 - Stefano Minardi 2011
Regular two-dimensional lattices of evanescently coupled waveguides may provide in the near future photonic components capable of combining interferometrically and simultaneously a large number of telescopes, thus easing the imaging capabilities of optical interferometers. In this paper, the theoretical modeling of the so-called Discrete Beam Combiners (DBC) is described and compared to the conventional model used for photonic beam combiners for astronomical interferometry. The performance of DBCs as compared to an ideal ABCD beam combiner is discussed and applications to astronomical instrumentation analyzed.
In this contribution, we review the results of the ALSI project (Advanced Laser-writing for Stellar Interferometry), aimed at assessing the potential of ultrafast laser writing to fabricate mid-infared integrated optics (IO) devices with performance compatible with an implementation in real interferometric instruments like Hi5 or PFI. Waveguides for the L, L and M bands with moderate propagation losses were manufactured in Gallium Lanthanum Sulfide and ZBLAN glasses and used to develop photonic building blocks as well as a full mid-IR 4-telescope beam combiner. We discuss the advantages and disadvantages of the tested combiners and discuss a possible roadmap for the continuation of this work.
290 - David A. Naylor 2013
The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach-Zehnder interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the Mach-Zehnder design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.
Integrated optic beam combiners offer many advantages over conventional bulk optic implementations for astronomical imaging. To date, integrated optic beam combiners have only been demonstrated at operating wavelengths below 4 microns. Operation in mid-infrared wavelength region, however, is highly desirable. In this paper, a theoretical design technique based on three coupled waveguides is developed to achieve fully achromatic, broadband, polarization-insensitive, lossless beam combining. This design may make it possible to achieve the very deep broadband nulls needed for exoplanet searching.
With the aim of utilizing arrayed waveguide gratings for multi-object spectroscopy in the field of astronomy, we outline several ways in which standard telecommunications grade chips should be modified. In particular, by removing the parabolic-horn taper or multimode interference coupler, and injecting with an optical fiber directly, the resolving power was increased threefold from 2400 pm 200 (spectral resolution of 0.63 pm 0.2 nm) to 7000 pm 700 (0.22 pm 0.02 nm) while attaining a throughput of 77 pm 5%. More importantly, the removal of the taper enabled simultaneous off-axis injection from multiple fibers, significantly increasing the number of spectra that can be obtained at once (i.e. the observing efficiency). Here we report that ~ 12 fibers can be injected simultaneously within the free spectral range of our device, with a 20% reduction in resolving power for fibers placed at 0.8 mm off centre.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا