No Arabic abstract
We consider the spatiotemporal evolution of a wave packet in disordered nonlinear Schrodinger and anharmonic oscillator chains. In the absence of nonlinearity all eigenstates are spatially localized with an upper bound on the localization length (Anderson localization). Nonlinear terms in the equations of motion destroy Anderson localization due to nonintegrability and deterministic chaos. At least a finite part of an initially localized wave packet will subdiffusively spread without limits. We analyze the details of this spreading process. We compare the evolution of single site, single mode and general finite size excitations, and study the statistics of detrapping times. We investigate the properties of mode-mode resonances, which are responsible for the incoherent delocalization process.
We reveal the generic characteristics of wave packet delocalization in two-dimensional nonlinear disordered lattices by performing extensive numerical simulations in two basic disordered models: the Klein-Gordon system and the discrete nonlinear Schr{o}dinger equation. We find that in both models (a) the wave packets second moment asymptotically evolves as $t^{a_m}$ with $a_m approx 1/5$ ($1/3$) for the weak (strong) chaos dynamical regime, in agreement with previous theoretical predictions [S.~Flach, Chem.~Phys.~{bf 375}, 548 (2010)], (b) chaos persists, but its strength decreases in time $t$ since the finite time maximum Lyapunov exponent $Lambda$ decays as $Lambda propto t^{alpha_{Lambda}}$, with $alpha_{Lambda} approx -0.37$ ($-0.46$) for the weak (strong) chaos case, and (c) the deviation vector distributions show the wandering of localized chaotic seeds in the lattices excited part, which induces the wave packets thermalization. We also propose a dimension-independent scaling between the wave packets spreading and chaoticity, which allows the prediction of the obtained $alpha_{Lambda}$ values.
We study the spreading of single-site excitations in one-dimensional disordered Klein-Gordon chains with tunable nonlinearity $|u_{l}|^{sigma} u_{l}$ for different values of $sigma$. We perform extensive numerical simulations where wave packets are evolved a) without and, b) with dephasing in normal mode space. Subdiffusive spreading is observed with the second moment of wave packets growing as $t^{alpha}$. The dependence of the numerically computed exponent $alpha$ on $sigma$ is in very good agreement with our theoretical predictions both for the evolution of the wave packet with and without dephasing (for $sigma geq 2$ in the latter case). We discuss evidence of the existence of a regime of strong chaos, and observe destruction of Anderson localization in the packet tails for small values of $sigma$.
We investigate the stability of an Anderson localized chain to the inclusion of a single finite interacting thermal seed. This system models the effects of rare low-disorder regions on many-body localized chains. Above a threshold value of the mean localization length, the seed causes runaway thermalization in which a finite fraction of the orbitals are absorbed into a thermal bubble. This `partially avalanched regime provides a simple example of a delocalized, non-ergodic dynamical phase. We derive the hierarchy of length scales necessary for typical samples to exhibit the avalanche instability, and show that the required seed size diverges at the avalanche threshold. We introduce a new dimensionless statistic that measures the effective size of the thermal bubble, and use it to numerically confirm the predictions of avalanche theory in the Anderson chain at infinite temperature.
Many-body localization (MBL) provides a mechanism to avoid thermalization in many-body quantum systems. Here, we show that an {it emergent} symmetry can protect a state from MBL. Specifically, we propose a $Z_2$ symmetric model with nonlocal interactions, which has an analytically known, SU(2) invariant, critical ground state. At large disorder strength all states at finite energy density are in a glassy MBL phase, while the lowest energy states are not. These do, however, localize when a perturbation destroys the emergent SU(2) symmetry. The model also provides an example of MBL in the presence of nonlocal, disordered interactions that are more structured than a power law. The presented ideas raise the possibility of an `inverted quantum scar, in which a state that does not exhibit area law entanglement is embedded in an MBL spectrum, which does.