Do you want to publish a course? Click here

Avalanche induced co-existing localised and thermal regions in disordered chains

144   0   0.0 ( 0 )
 Added by Philip Crowley
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the stability of an Anderson localized chain to the inclusion of a single finite interacting thermal seed. This system models the effects of rare low-disorder regions on many-body localized chains. Above a threshold value of the mean localization length, the seed causes runaway thermalization in which a finite fraction of the orbitals are absorbed into a thermal bubble. This `partially avalanched regime provides a simple example of a delocalized, non-ergodic dynamical phase. We derive the hierarchy of length scales necessary for typical samples to exhibit the avalanche instability, and show that the required seed size diverges at the avalanche threshold. We introduce a new dimensionless statistic that measures the effective size of the thermal bubble, and use it to numerically confirm the predictions of avalanche theory in the Anderson chain at infinite temperature.



rate research

Read More

We consider the spatiotemporal evolution of a wave packet in disordered nonlinear Schrodinger and anharmonic oscillator chains. In the absence of nonlinearity all eigenstates are spatially localized with an upper bound on the localization length (Anderson localization). Nonlinear terms in the equations of motion destroy Anderson localization due to nonintegrability and deterministic chaos. At least a finite part of an initially localized wave packet will subdiffusively spread without limits. We analyze the details of this spreading process. We compare the evolution of single site, single mode and general finite size excitations, and study the statistics of detrapping times. We investigate the properties of mode-mode resonances, which are responsible for the incoherent delocalization process.
We study heat conduction mediated by longitudinal phonons in one dimensional disordered harmonic chains. Using scaling properties of the phonon density of states and localization in disordered systems, we find non-trivial scaling of the thermal conductance with the system size. Our findings are corroborated by extensive numerical analysis. We show that a system with strong disorder, characterized by a `heavy-tailed probability distribution, and with large impedance mismatch between the bath and the system satisfies Fouriers law. We identify a dimensionless scaling parameter, related to the temperature scale and the localization length of the phonons, through which the thermal conductance for different models of disorder and different temperatures follows a universal behavior.
We discuss fluctuation-induced forces in a system described by a continuous Landau-Ginzburg model with a quenched disorder field, defined in a $d$-dimensional slab geometry $mathbb R^{d-1}times[0,L]$. A series representation for the quenched free energy in terms of the moments of the partition function is presented. In each moment an order parameter-like quantity can be defined, with a particular correlation length of the fluctuations. For some specific strength of the non-thermal control parameter, it appears a moment of the partition function where the fluctuations associated to the order parameter-like quantity becomes long-ranged. In this situation, these fluctuations become sensitive to the boundaries. In the Gaussian approximation, using the spectral zeta-function method, we evaluate a functional determinant for each moment of the partition function. The analytic structure of each spectral zeta-function depending on the dimension of the space for the case of Dirichlet, Neumann Laplacian and also periodic boundary conditions is discussed in a unified way. Considering the moment of the partition function with the largest correlation length of the fluctuations, we evaluate the induced force between the boundaries, for Dirichlet boundary conditions. We prove that the sign of the fluctuation-induced force for this case depend in a non-trivial way on the strength of the non-thermal control parameter.
195 - S. J. Garratt , Sthitadhi Roy , 2021
By varying the disorder realisation in the many-body localised (MBL) phase, we investigate the influence of resonances on spectral properties. The standard theory of the MBL phase is based on the existence of local integrals of motion (LIOM), and eigenstates of the time evolution operator can be described as LIOM configurations. We show that smooth variations of the disorder give rise to avoided level crossings, and we identify these with resonances between LIOM configurations. Through this parametric approach, we develop a theory for resonances in terms of standard properties of non-resonant LIOM. This framework describes resonances that are locally pairwise, and is appropriate in arbitrarily large systems deep within the MBL phase. We show that resonances are associated with large level curvatures on paths through the ensemble of disorder realisations, and we determine the curvature distribution. By considering the level repulsion associated with resonances we calculate the two-point correlator of the level density. We also find the distributions of matrix elements of local observables and discuss implications for low-frequency dynamics.
Hysteresis loops and the associated avalanche statistics of spin systems, such as the random-field Ising and Edwards-Anderson spin-glass models, have been extensively studied. A particular focus has been on self-organized criticality, manifest in power-law distributions of avalanche sizes. Considerably less work has been done on the statistics of the times between avalanches. This paper considers this issue, generalizing the work of Nampoothiri et al. [Phys. Rev. E 96, 032107 (2017)] in one space dimension to higher space dimensions. In addition to the interevent statistics of all avalanches, we also consider what happens when events are restricted to those exceeding a certain threshold size. Doing so raises the possibility of altering the definition of time to count the number of small events between the large ones, which provides for an analog to the concept of natural time introduced by the geophysics community with the goal of predicting patterns in seismic events. We analyze the distribution of time and natural time intervals both in the case of models that include only nearest-neighbor interactions, as well as models with (sparse) long-range couplings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا