While there are well established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many body delocalization transitions. Here, we use a generalized real-space renormalization group technique to study the anisotropic Heisenberg model with long-range interactions, decaying with a power $alpha$, which are generated by placing spins at random positions along the chain. This method permits a large-scale finite-size scaling analysis. We examine the full distribution function of the excitation energy gap from the ground state and observe a crossover with decreasing $alpha$. At $alpha_c$ the full distribution coincides with a critical function. Thereby, we find strong evidence for the existence of a many body localization transition in disordered antiferromagnetic spin chains with long range interactions.
Thermalization of random-field Heisenberg spin chain is probed by time evolution of density correlation functions. Studying the impacts of average energies of initial product states on dynamics of the system, we provide arguments in favor of the existence of a mobility edge in the large system-size limit.
We investigate the phase transition between an ergodic and a many-body localized phase in infinite anisotropic spin-$1/2$ Heisenberg chains with binary disorder. Starting from the Neel state, we analyze the decay of antiferromagnetic order $m_s(t)$ and the growth of entanglement entropy $S_{textrm{ent}}(t)$ during unitary time evolution. Near the phase transition we find that $m_s(t)$ decays exponentially to its asymptotic value $m_s(infty) eq 0$ in the localized phase while the data are consistent with a power-law decay at long times in the ergodic phase. In the localized phase, $m_s(infty)$ shows an exponential sensitivity on disorder with a critical exponent $ usim 0.9$. The entanglement entropy in the ergodic phase grows subballistically, $S_{textrm{ent}}(t)sim t^alpha$, $alphaleq 1$, with $alpha$ varying continuously as a function of disorder. Exact diagonalizations for small systems, on the other hand, do not show a clear scaling with system size and attempts to determine the phase boundary from these data seem to overestimate the extent of the ergodic phase.
We analyze many-body localization (MBL) to delocalization transition in Sherrington-Kirkpatrick (SK) model of Ising spin glass (SG) in the presence of a transverse field $Gamma$. Based on energy resolved analysis, which is of relevance for a closed quantum system, we show that the quantum SK model has many-body mobility edges separating MBL phase which is non-ergodic and non-thermal from the delocalized phase which is ergodic and thermal. The range of the delocalized regime increases with increase in the strength of $Gamma$ and eventually for $Gamma$ larger than $Gamma_{CP}$ the entire many-body spectrum is delocalized. We show that the Renyi entropy is almost independent of the system size in the MBL phase, hinting towards an area law in this infinite range model while the delocalized phase shows volume law scaling of Renyi entropy. We further obtain spin glass transition curve in energy density $epsilon$-$Gamma$ plane from the collapse of eigenstate spin susceptibility. We demonstrate that in most of the parameter regime SG transition occurs close to the MBL transition indicating that the SG phase is non-ergodic and non-thermal while the paramagnetic phase is delocalized and thermal.
We generalize Pages result on the entanglement entropy of random pure states to the many-body eigenstates of realistic disordered many-body systems subject to long range interactions. This extension leads to two principal conclusions: first, for increasing disorder the shells of constant energy supporting a systems eigenstates fill only a fraction of its full Fock space and are subject to intrinsic correlations absent in synthetic high-dimensional random lattice systems. Second, in all regimes preceding the many-body localization transition individual eigenstates are thermally distributed over these shells. These results, corroborated by comparison to exact diagonalization for an SYK model, are at variance with the concept of non-ergodic extended states in many-body systems discussed in the recent literature.
Elmer V. H. Doggen
,Frank Schindler
,Konstantin S. Tikhonov
.
(2018)
.
"Many-body localization and delocalization in large quantum chains"
.
Elmer Doggen
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا