Do you want to publish a course? Click here

Graphite from the viewpoint of Landau level spectroscopy: An effective graphene bilayer and monolayer

182   0   0.0 ( 0 )
 Added by Milan Orlita
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe an infrared transmission study of a thin layer of bulk graphite in magnetic fields up to B = 34 T. Two series of absorption lines whose energy scales as sqrtB and B are present in the spectra and identified as contributions of massless holes at the H point and massive electrons in the vicinity of the K point, respectively. We find that the optical response of the K point electrons corresponds, over a wide range of energy and magnetic field, to a graphene bilayer with an effective inter-layer coupling 2gamma_1, twice the value for a real graphene bilayer, which reflects the crystal ordering of bulk graphite along the c-axis. The K point electrons thus behave as massive Dirac fermions with a mass enhanced twice in comparison to a true graphene bilayer.



rate research

Read More

232 - J. Velasco Jr. , Y. Lee , Z. Zhao 2013
Landau level gaps are important parameters for understanding electronic interactions and symmetry-broken processes in bilayer graphene (BLG). Here we present transport spectroscopy measurements of LL gaps in double-gated suspended BLG with high mobilities in the quantum Hall regime. By using bias as a spectroscopic tool, we measure the gap {Delta} for the quantum Hall (QH) state at filling factor { u}={pm}4 and -2. The single-particle gap for { u}=4 scales linearly with magnetic field B and is independent of the out-of-plane electric field E. For the symmetry-broken { u}=-2 state, the measured values of gap are 1.1 meV/T and 0.17 meV/T for singly-gated geometry and dual-gated geometry at E=0, respectively. The difference between the two values arises from the E-dependence of the gap, suggesting that the { u}=-2 state is layer polarized. Our studies provide the first measurements of the gaps of the broken symmetry QH states in BLG with well-controlled E, and establish a robust method that can be implemented for studying similar states in other layered materials.
The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high field regime, the eight-fold degeneracy in the zero energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding filling factors $ u=$0, 1, 2, & 3. Measurements of the activation energy gap in tilted magnetic fields suggest that the Landau level splitting at the newly formed $ u=$1, 2, & 3 filling factors are independent of spin, consistent with the formation of a quantum Hall ferromagnet. In addition, measurements taken at the $ u$ = 0 charge neutral point show that, similar to single layer graphene, the bilayer becomes insulating at high fields.
182 - Yafis Barlas , R. Cote , K. Nomura 2008
Interaction driven integer quantum Hall effects are anticipated in graphene bilayers because of the near-degeneracy of the eight Landau levels which appear near the neutral system Fermi level. We predict that an intra-Landau-level cyclotron resonance signal will appear at some odd-integer filling factors, accompanied by collective modes which are nearly gapless and have approximate $k^{3/2}$ dispersion. We speculate on the possibility of unususal localization physics associated with these modes.
We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the dielectric environment, on the index of Landau level involved, and to vary as a function of the magnetic field. This contradicts the single-particle picture of non-interacting massless Dirac electrons, but is accounted for by theory when the effect of electron-electron interaction is taken into account. Raman active, zero-momentum inter Landau level excitations in graphene are sensitive to electron-electron interactions due to the non-applicability of the Kohn theorem in this system, with a clearly non-parabolic dispersion relation.
73 - Bo E. Sernelius 2015
We derive core-level spectra for doped free-standing bilayer graphene. Numerical results are presented for all nine combinations of the doping concentrations $10^{12}rm{cm}^{-2}$, $10^{13}rm{cm}^{-2}$, and $10^{14}rm{cm}^{-2}$ in the two graphene sheets and we compare the results to the reference spectra for monolayer graphene. We furthermore discuss the spectrum of single-particle inter-band and intra-band excitations in the $omega q$-plane, and show how the dispersion curves of the collective modes are modified in the bilayer system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا