Do you want to publish a course? Click here

Proof-of-Concept of Real-World Quantum Key Distribution with Quantum Frames

82   0   0.0 ( 0 )
 Added by Xiaofan Mo
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose and experimentally investigate a fibre-based quantum key distribution system, which employs polarization qubits encoded into faint laser pulses. As a novel feature, it allows sending of classical framing information via sequences of strong laser pulses that precede the quantum data. This allows synchronization, sender and receiver identification, and compensation of time-varying birefringence in the communication channel. In addition, this method also provides a platform to communicate implementation specific information such as encoding and protocol in view of future optical quantum networks. Furthermore, we report on our current effort to develop high-rate error correction.



rate research

Read More

Quantum mechanics allows the distribution of intrinsically secure encryption keys by optical means. Twin-field quantum key distribution is the most promising technique for its implementation on long-distance fibers, but requires stabilizing the optical length of the communication channels between parties. In proof-of-principle experiments based on spooled fibers, this was achieved by interleaving the quantum communication with periodical adjustment frames. In this approach, longer duty cycles for the key streaming come at the cost of a looser control of channel length, and a successful key-transfer using this technique in a real world remains a significant challenge. Using interferometry techniques derived from frequency metrology, we developed a solution for the simultaneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed fiber with 65 dB loss. Our technique reduces the quantum-bit-error-rate contributed by channel length variations to <1%, representing an effective solution for real-world quantum communications.
We prove the security of theoretical quantum key distribution against the most general attacks which can be performed on the channel, by an eavesdropper who has unlimited computation abilities, and the full power allowed by the rules of classical and quantum physics. A key created that way can then be used to transmit secure messages such that their security is also unaffected in the future.
169 - Rui-Qi Gao , Yuan-Mei Xie , Jie Gu 2021
Coherent-one-way quantum key distribution (COW-QKD), possessing the simple experimental setup and the ability against the photon-number-splitting attack, has been implemented in various experiments and commercial applications. However, recent works have proved that current COW-QKD with key rate scaling linearly with transmittance is totally insecure under the zero-error attack. This conclusion leads to a crucial consequence that all the current attempts for practicalization are in vain. To solve this pending issue, here we conduct a minor revision on original COW-QKD while maintaining the original experimental setup as well as the simplicity of implementation. By more precisely estimating the amount of leaked information, we provide an explicit unconditional secure key rate which scales with $0.7%$ of the bound that quadratically scales with transmittance. Our work provides a revised COW-QKD which guarantees the availability of the current implementations of COW-QKD within 100 km and establishes the theoretical foundations for further application.
99 - Peter W. Shor 2000
We prove the security of the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chaus proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement-purification based protocol uses Calderbank-Shor-Steane (CSS) codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.
Quantum key distribution is one of the most fundamental cryptographic protocols. Quantum walks are important primitives for computing. In this paper we take advantage of the properties of quantum walks to design new secure quantum key distribution schemes. In particular, we introduce a secure quantum key-distribution protocol equipped with verification procedures against full man-in-the-middle attacks. Furthermore, we present a one-way protocol and prove its security. Finally, we propose a semi-quantum variation and prove its robustness against eavesdropping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا