No Arabic abstract
Quantum mechanics allows the distribution of intrinsically secure encryption keys by optical means. Twin-field quantum key distribution is the most promising technique for its implementation on long-distance fibers, but requires stabilizing the optical length of the communication channels between parties. In proof-of-principle experiments based on spooled fibers, this was achieved by interleaving the quantum communication with periodical adjustment frames. In this approach, longer duty cycles for the key streaming come at the cost of a looser control of channel length, and a successful key-transfer using this technique in a real world remains a significant challenge. Using interferometry techniques derived from frequency metrology, we developed a solution for the simultaneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed fiber with 65 dB loss. Our technique reduces the quantum-bit-error-rate contributed by channel length variations to <1%, representing an effective solution for real-world quantum communications.
Twin-Field (TF) quantum key distribution (QKD) is a major candidate to be the new benchmark for far-distance QKD implementations, since its secret key rate can overcome the repeaterless bound by means of a simple interferometric measurement. Many variants of the original protocol have been recently proven to be secure. Here, we focus on the TF-QKD type protocol proposed by Curty et al [preprint arXiv:1807.07667], which can provide a high secret key rate and whose practical feasibility has been demonstrated in various recent experiments. The security of this protocol relies on the estimation of certain detection probabilities (yields) through the decoy-state technique. Analytical bounds on the relevant yields have been recently derived assuming that both parties use the same set of decoy intensities, thus providing sub-optimal key rates in asymmetric-loss scenarios. Here we derive new analytical bounds when the parties use either three or four independent decoy intensity settings each. With the new bounds we optimize the protocols performance in asymmetric-loss scenarios and show that the protocol is robust against uncorrelated intensity fluctuations affecting the parties lasers.
Twin-field quantum key distribution (TF-QKD) and its variant protocols are highly attractive due to the advantage of overcoming the rate-loss limit for secret key rates of point-to-point QKD protocols. For variations of TF-QKD, the key point to ensure security is switching randomly between a code mode and a test mode. Among all TF-QKD protocols, their code modes are very different, e.g. modulating continuous phases, modulating only two opposite phases, and sending or not sending signal pulses. Here we show that, by discretizing the number of global phases in the code mode, we can give a unified view on the first two types of TF-QKD protocols, and demonstrate that increasing the number of discrete phases extends the achievable distance, and as a trade-off, lowers the secret key rate at short distances due to the phase post-selection.
Twin-Field Quantum Key Distribution(TF-QKD) protocol and its variants, such as Phase-Matching QKD(PM-QKD), sending or not QKD(SNS-QKD) and No Phase Post-Selection TF-QKD(NPP-TFQKD), are very promising for long-distance applications. However, there are still some gaps between theory and practice in these protocols. Concretely, a finite-key size analysis is still missing, and the intensity fluctuations are not taken into account. To address the finite-key size effect, we first give the key rate of NPP-TFQKD against collective attack in finite-key size region and then prove it can be against coherent attack. To deal with the intensity fluctuations, we present an analytical formula of 4-intensity decoy state NPP-TFQKD and a practical intensity fluctuation model. Finally, through detailed simulations, we show NPP-TFQKD can still keep its superiority of high key rate and long achievable distance.
Twin-field quantum key distribution (TF-QKD), which is immune to all possible detector side channel attacks, enables two remote legitimate users to perform secure communications without quantum repeaters. With the help of a central node, TF-QKD is expected to overcome the linear key-rate constraint using current technologies. However, the security of the former TF-QKD protocols relies on the hypothesis of infinite-key and stable sources. In this paper, we present the finite-key analysis of a practical decoy-state twin-field quantum key distribution with variant statistical fluctuation models. We examine the composable security of the protocol with intensity fluctuations of unstable sources employing Azumas inequality. Our simulation results indicate that the secret key rate is able to surpass the linear key-rate bound with limited signal pulses and intensity fluctuations. In addition, the effect of intensity fluctuations is extremely significant for small size of total signals.
Twin-Field quantum key distribution (TF-QKD) and its variants, e.g. Phase-Matching QKD, Sending-or-not-sending QKD, and No Phase Post-Selection TFQKD promise high key rates at long distance to beat the rate distance limit without a repeater. The security proof of these protocols are based on decoy-state method, which is usually performed by actively modulating a variable optical attenuator together with a random number generator in practical experiments, however, active-decoy schemes like this may lead to side channel and could open a security loophole. To enhance the source security of TF-QKD, in this paper, we propose passive-decoy based TF-QKD, in which we combine TF-QKD with the passive-decoy method. And we present a simulation comparing the key generation rate with that in active-decoy, the result shows our scheme performs as good as active decoy TF-QKD, and our scheme could reach satisfactory secret key rates with just a few photon detectors. This shows our work is meaningful in practice.