Do you want to publish a course? Click here

On exceptional nilpotents in semisimple Lie algebras

158   0   0.0 ( 0 )
 Added by Victor Kac
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We classify all pairs (m,e), where m is a positive integer and e is a nilpotent element of a semisimple Lie algebra, which arise in the classification of simple rational W-algebras.



rate research

Read More

We show that, in compact semisimple Lie groups and Lie algebras, any neighbourhood of the identity gets mapped, under the commutator map, to a neighbourhood of the identity.
A theory of cyclic elements in semisimple Lie algebras is developed. It is applied to an explicit construction of regular elements in Weyl groups.
99 - Shuai Hou , Yunhe Sheng 2021
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this fact, we define the cohomology of a twisted Rota-Baxter operator and study infinitesimal deformations of a twisted Rota-Baxter operator using the second cohomology group. Then we introduce the notion of an NS-3-Lie algebra, which produces a 3-Lie algebra with a representation on itself. We show that a twisted Rota-Baxter operator induces an NS-3-Lie algebra naturally. Thus NS-3-Lie algebras can be viewed as the underlying algebraic structures of twisted Rota-Baxter operators on 3-Lie algebras. Finally we show that a Nijenhuis operator on a 3-Lie algebra gives rise to a representation of the deformed 3-Lie algebra and a 2-cocycle. Consequently, the identity map will be a twisted Rota-Baxter operator on the deformed 3-Lie algebra. We also introduce the notion of a Reynolds operator on a 3-Lie algebra, which can serve as a special case of twisted Rota-Baxter operators on 3-Lie algebras.
The symplectic structures on $3$-Lie algebras and metric symplectic $3$-Lie algebras are studied. For arbitrary $3$-Lie algebra $L$, infinite many metric symplectic $3$-Lie algebras are constructed. It is proved that a metric $3$-Lie algebra $(A, B)$ is a metric symplectic $3$-Lie algebra if and only if there exists an invertible derivation $D$ such that $Din Der_B(A)$, and is also proved that every metric symplectic $3$-Lie algebra $(tilde{A}, tilde{B}, tilde{omega})$ is a $T^*_{theta}$-extension of a metric symplectic $3$-Lie algebra $(A, B, omega)$. Finally, we construct a metric symplectic double extension of a metric symplectic $3$-Lie algebra by means of a special derivation.
262 - Ming Chen , Jiefeng Liu , Yao Ma 2021
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-LieRep pairs. The notion of an n-pre-Lie algebra is introduced, which is the underlying algebraic structure of the relative Rota-Baxter operator. We give the cohomology of relative Rota-Baxter operators and study infinitesimal deformations and extensions of order m deformations to order m+1 deformations of relative Rota-Baxter operators through the cohomology groups of relative Rota-Baxter operators. Moreover, we build the relation between the cohomology groups of relative Rota-Baxter operators on n-LieRep pairs and those on (n+1)-LieRep pairs by certain linear functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا