Do you want to publish a course? Click here

Symplectic structures on $3$-Lie algebras

269   0   0.0 ( 0 )
 Added by Ruipu Bai
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The symplectic structures on $3$-Lie algebras and metric symplectic $3$-Lie algebras are studied. For arbitrary $3$-Lie algebra $L$, infinite many metric symplectic $3$-Lie algebras are constructed. It is proved that a metric $3$-Lie algebra $(A, B)$ is a metric symplectic $3$-Lie algebra if and only if there exists an invertible derivation $D$ such that $Din Der_B(A)$, and is also proved that every metric symplectic $3$-Lie algebra $(tilde{A}, tilde{B}, tilde{omega})$ is a $T^*_{theta}$-extension of a metric symplectic $3$-Lie algebra $(A, B, omega)$. Finally, we construct a metric symplectic double extension of a metric symplectic $3$-Lie algebra by means of a special derivation.



rate research

Read More

119 - Genqiang Liu , Kaiming Zhao 2019
The rank $n$ symplectic oscillator Lie algebra $mathfrak{g}_n$ is the semidirect product of the symplectic Lie algebra $mathfrak{sp}_{2n}$ and the Heisenberg Lie algebra $H_n$. In this paper, we study weight modules with finite dimensional weight spaces over $mathfrak{g}_n$. When $dot z eq 0$, it is shown that there is an equivalence between the full subcategory $mathcal{O}_{mathfrak{g}_n}[dot z]$ of the BGG category $mathcal{O}_{mathfrak{g}_n}$ for $mathfrak{g}_n$ and the BGG category $mathcal{O}_{mathfrak{sp}_{2n}}$ for $mathfrak{sp}_{2n}$. Then using the technique of localization and the structure of generalized highest weight modules, we also give the classification of simple weight modules over $mathfrak{g}_n$ with finite-dimensional weight spaces.
83 - Tosiaki Kori 2021
Let L be the space of spinors on the 3-sphere that are the restrictions of the Laurent polynomial type harmonic spinors on C^2. L becomes an associative algebra. For a simple Lie algebra g, the real Lie algebra Lg generated by the tensor product of L and g is called the g-current algebra. The real part K of L becomes a commutative subalgebra of L. For a Cartan subalgebra h of g, h tensored by K becomes a Cartan subalgebra Kh of Lg. The set of non-zero weights of the adjoint representation of Kh corresponds bijectively to the root space of g. Let g=h+e+ f be the standard triangular decomposition of g, and let Lh, Le and Lf respectively be the Lie subalgebras of Lg generated by the tensor products of L with h, e and f respectively . Then we have the triangular decomposition: Lg=Lh+Le+Lf, that is also associated with the weight space decomposition of Lg. With the aid of the basic vector fields on the 3-shpere that arise from the infinitesimal representation of SO(3) we introduce a triple of 2-cocycles {c_k; k=0,1,2} on Lg. Then we have the central extension: Lg+ sum Ca_k associated to the 2-cocycles {c_k; k=0,1,2}. Adjoining a derivation coming from the radial vector field on S^3 we obtain the second central extension g^=Lg+ sum Ca_k + Cn. The root space decomposition of g^ as welll as the Chevalley generators of g^ will be given.
143 - Kori Tosiaki 2020
We give a definition of quaternion Lie algebra and of the quaternification of a complex Lie algebra. By our definition gl(n,H), sl(n,H), so*(2n) ans sp(n) are quaternifications of gl(n,C), sl(n,C), so(n,C) and u(n) respectively. Then we shall prove that a simple Lie algebra admits the quaternification. For the proof we follow the well known argument due to Harich-Chandra, Chevalley and Serre to construct the simple Lie algebra from its corresponding root system. The root space decomposition of this quaternion Lie algebra will be given. Each root sapce of a fundamental root is complex 2-dimensional.
99 - Shuai Hou , Yunhe Sheng 2021
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this fact, we define the cohomology of a twisted Rota-Baxter operator and study infinitesimal deformations of a twisted Rota-Baxter operator using the second cohomology group. Then we introduce the notion of an NS-3-Lie algebra, which produces a 3-Lie algebra with a representation on itself. We show that a twisted Rota-Baxter operator induces an NS-3-Lie algebra naturally. Thus NS-3-Lie algebras can be viewed as the underlying algebraic structures of twisted Rota-Baxter operators on 3-Lie algebras. Finally we show that a Nijenhuis operator on a 3-Lie algebra gives rise to a representation of the deformed 3-Lie algebra and a 2-cocycle. Consequently, the identity map will be a twisted Rota-Baxter operator on the deformed 3-Lie algebra. We also introduce the notion of a Reynolds operator on a 3-Lie algebra, which can serve as a special case of twisted Rota-Baxter operators on 3-Lie algebras.
In this paper, we define a class of 3-algebras which are called 3-Lie-Rinehart algebras. A 3-Lie-Rinehart algebra is a triple $(L, A, rho)$, where $A$ is a commutative associative algebra, $L$ is an $A$-module, $(A, rho)$ is a 3-Lie algebra $L$-module and $rho(L, L)subseteq Der(A)$. We discuss the basic structures, actions and crossed modules of 3-Lie-Rinehart algebras and construct 3-Lie-Rinehart algebras from given algebras, we also study the derivations from 3-Lie-Rinehart algebras to 3-Lie $A$-algebras. From the study, we see that there is much difference between 3-Lie algebras and 3-Lie-Rinehart algebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا