Do you want to publish a course? Click here

Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations

208   0   0.0 ( 0 )
 Added by Anna Macio{\\l}ek
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Effective Casimir forces induced by thermal fluctuations in the vicinity of bulk critical points are studied by means of Monte Carlo simulations in three-dimensional systems for film geometries and within the experimentally relevant Ising and XY universality classes. Several surface universality classes of the confining surfaces are considered, some of which are relevant for recent experiments. A novel approach introduced previously EPL 80, 60009 (2007), based inter alia on an integration scheme of free energy differences, is utilized to compute the universal scaling functions of the critical Casimir forces in the critical range of temperatures above and below the bulk critical temperature. The resulting predictions are compared with corresponding experimental data for wetting films of fluids and with available theoretical results.



rate research

Read More

The confinement of critical fluctuations in soft media induces critical Casimir forces acting on the confining surfaces. The temperature and geometry dependences of such forces are characterized by universal scaling functions. A novel approach is presented to determine them for films via Monte Carlo simulations of lattice models. The method is based on an integration scheme of free energy differences. Our results for the Ising and the XY universality class compare favourably with corresponding experimental results for wetting layers of classical binary liquid mixtures and of 4He, respectively.
Using general scaling arguments combined with mean-field theory we investigate the critical ($T simeq T_c$) and off-critical ($T e T_c$) behavior of the Casimir forces in fluid films of thickness $L$ governed by dispersion forces and exposed to long-ranged substrate potentials which are taken to be equal on both sides of the film. We study the resulting effective force acting on the confining substrates as a function of $T$ and of the chemical potential $mu$. We find that the total force is attractive both below and above $T_c$. If, however, the direct substrate-substrate contribution is subtracted, the force is repulsive everywhere except near the bulk critical point $(T_c,mu_c)$, where critical density fluctuations arise, or except at low temperatures and $(L/a) (betaDelta mu) =O(1)$, with $Delta mu=mu-mu_c <0$ and $a$ the characteristic distance between the molecules of the fluid, i.e., in the capillary condensation regime. While near the critical point the maximal amplitude of the attractive force if of order of $L^{-d}$ in the capillary condensation regime the force is much stronger with maximal amplitude decaying as $L^{-1}$. Essential deviations from the standard finite-size scaling behavior are observed within the finite-size critical region $L/xi=O(1)$ for films with thicknesses $L lesssim L_{rm crit}$, where $L_{rm crit}=xi_0^pm (16 |s|)^{ u/beta}$, with $ u$ and $beta$ as the standard bulk critical exponents and with $s=O(1)$ as the dimensionless parameter that characterizes the relative strength of the long-ranged tail of the substrate-fluid over the fluid-fluid interaction. We present the modified finite-size scaling pertinent for such a case and analyze in detail the finite-size behavior in this region.
We present a new Monte Carlo method to calculate Casimir forces acting on objects in a near-critical fluid, considering the two basic cases of a wall and a sphere embedded in a two-dimensional Ising medium. During the simulation, the objects are moved through the system with appropriate statistical weights, and consequently are attracted or repelled from the system boundaries depending on the boundary conditions. The distribution function of the object position is utilized to obtain the residual free energy, or Casimir potential, of the configuration as well as the corresponding Casimir force. The results are in perfect agreement with known exact results. The method can easily be generalized to more complicated geometries, to higher dimensions, and also to colloidal suspensions with many particles.
361 - N.B. Wilding , A.D. Bruce 2000
We describe a Monte Carlo procedure which allows sampling of the disjoint configuration spaces associated with crystalline and fluid phases, within a single simulation. The method utilises biased sampling techniques to enhance the probabilities of gateway states (in each phase) which are such that a global switch (to the other phase) can be implemented. Equilibrium freezing-point parameters can be determined directly; statistical uncertainties prescribed transparently; and finite-size effects quantified systematically. The method is potentially quite general; we apply it to the freezing of hard spheres.
We analyze the critical properties of the three-dimensional Ising model with linear parallel extended defects. Such a form of disorder produces two distinct correlation lengths, a parallel correlation length $xi_parallel$ in the direction along defects, and a perpendicular correlation length $xi_perp$ in the direction perpendicular to the lines. Both $xi_parallel$ and $xi_perp$ diverge algebraically in the vicinity of the critical point, but the corresponding critical exponents $ u_parallel$ and $ u_perp$ take different values. This property is specific for anisotropic scaling and the ratio $ u_parallel/ u_perp$ defines the anisotropy exponent $theta$. Estimates of quantitative characteristics of the critical behaviour for such systems were only obtained up to now within the renormalization group approach. We report a study of the anisotropic scaling in this system via Monte Carlo simulation of the three-dimensional system with Ising spins and non-magnetic impurities arranged into randomly distributed parallel lines. Several independent estimates for the anisotropy exponent $theta$ of the system are obtained, as well as an estimate of the susceptibility exponent $gamma$. Our results corroborate the renormalization group predictions obtained earlier.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا