Do you want to publish a course? Click here

Dark matter and sub-GeV hidden U(1) in GMSB models

160   0   0.0 ( 0 )
 Added by Jong-Chul Park
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the recent PAMELA and ATIC data, one is led to a scenario with heavy vector-like dark matter in association with a hidden $U(1)_X$ sector below GeV scale. Realizing this idea in the context of gauge mediated supersymmetry breaking (GMSB), a heavy scalar component charged under $U(1)_X$ is found to be a good dark matter candidate which can be searched for direct scattering mediated by the Higgs boson and/or by the hidden gauge boson. The latter turns out to put a stringent bound on the kinetic mixing parameter between $U(1)_X$ and $U(1)_Y$: $theta lesssim 10^{-6}$. For the typical range of model parameters, we find that the decay rates of the ordinary lightest neutralino into hidden gauge boson/gaugino and photon/gravitino are comparable, and the former decay mode leaves displaced vertices of lepton pairs and missing energy with distinctive length scale larger than 20 cm for invariant lepton pair mass below 0.5 GeV. An unsatisfactory aspect of our model is that the Sommerfeld effect cannot raise the galactic dark matter annihilation by more than 60 times for the dark matter mass below TeV.

rate research

Read More

We present a detailed study of the non-abelian vector dark matter candidate $W^prime$ with a MeV-GeV low mass range, accompanied by a dark photon $A^prime$ and a dark $Z^prime$ of similar masses, in the context of a gauged two-Higgs-doublet model with the hidden gauge group that has the same structure as the Standard Model electroweak gauge group. The stability of dark matter is protected by an accidental discrete $Z_2$ symmetry ($h$-parity) which was usually imposed ad hoc by hand. We examine the model by taking into account various experimental constraints including dark photon searches at NA48, NA64, E141, $ u$-CAL, BaBar and LHCb experiments, electroweak precision data from LEP, relic density from Planck satellite, direct (indirect) detection of dark matter from CRESST-III, DarkSide-50, XENON1T (Fermi-LAT), and collider physics from the LHC. The theoretical requirements of bounded from below of the scalar potential and tree level perturbative unitarity of the scalar sector are also imposed. The viable parameter space of the model consistent with all the constraints is exhibited. While a dark $Z^prime$ can be the dominant contribution in the relic density due to resonant annihilation of dark matter, a dark photon is crucial to dark matter direct detection. We also demonstrate that the parameter space can be further probed by various sub-GeV direct dark matter experimental searches at CDEX, NEWS-G and SuperCDMS in the near future.
We analyze the prospects for light neutralino dark matter in the minimal supersymmetric model extended by a $U(1)$ gauge group. We allow the neutralino to be an arbitrary admixture of singlet and doublet higgsinos, as well as of the three gauginos, and we require agreement with the data from the direct and indirect dark matter detection experiments, while maintaining consistency of the model with the relic density and with the recent Higgs data from the LHC. The constraints have implications for the structure of the lightest neutralino as a dark matter candidate, indicating that it is largely singlino, and its mass can be as light as $sim 20 $ GeV.
We suggest a dark matter scenario which could contribute the possible anomaly observed by Fermi-LAT $gamma$-ray space telescope. It is based on the model recently proposed by Weinberg. In our scenario the gamma-ray line signal comes from the fermionic dark matter ($M_{rm DM}=214 $ GeV) annihilating into two light scalars with mass around 500 MeV which in turn decay into two neutral pions. Finally the pions can decay into two 130 GeV photons. The strong constraint from the direct detection leaves only the channel of the dark matter annihilation into two light scalars for both the relic density and the Fermi-LAT gamma-ray line signal. The resulting gamma-ray spectrum is rather broad and does not fit to the data perfectly, but the data also show there may be fluctuation in the spectrum. There is no associated $Z$-boson or Higgs boson production contrary to most other works where the signal comes from the loops of charged particles. The annihilation into the other SM particles are highly suppressed due to the small mixing from the direct detection. Future experiments with more data will give more clues on the possible scenarios.
We study the phenomenology and detection prospects of a sub-GeV Dirac dark matter candidate with resonantly enhanced annihilations via a dark photon mediator. The model evades cosmological constraints on light thermal particles in the early universe while simultaneously being in reach of current and upcoming terrestrial experiments. We conduct a global analysis of the parameter space , considering bounds from accelerator and direct detection experiments, as well as those arising from Big Bang Nucleosynthesis, the Cosmic Microwave Background and dark matter self-interactions. We also extend our discussion to the case of a dark matter subcomponent. We find that large regions of parameter space remain viable even for the case of a moderate resonant enhancement, and demonstrate the complementarity of different experimental strategies for further exploring this scenario.
127 - A. Albaid , K.S. Babu 2012
We investigate the effects of messenger-matter mixing on the lightest CP-even Higgs boson mass m_h in gauge-mediated supersymmetry breaking models. It is shown that with such mixings m_h can be raised to about 125 GeV, even when the superparticles have sub-TeV masses, and when the gravitino has a cosmologically preferred sub-keV mass. In minimal gauge mediation without messenger-matter mixing, realizing m_h = 125 GeV would require multi-TeV SUSY spectrum. The increase in $m_h$ due to messenger-matter mixing is maximal in the case of messengers belonging to 10+bar{10} of SU(5) unification, while it is still significant when they belong to $5+bar{5}$ of SU(5). Our results are compatible with gauge coupling unification, perturbativity, and the unification of messenger Yukawa couplings. We embed these models into a grand unification framework with a U(1) flavor symmetry that addresses the fermion mass hierarchy and generates naturally large neutrino mixing angles. While SUSY mediated flavor changing processes are sufficiently suppressed in such an embedding, small new contributions to K^0-bar{K^0} mixing can resolve the apparent discrepancy in the CP asymmetry parameters sin2beta and epsilon_K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا