Do you want to publish a course? Click here

Higgs boson of mass 125 GeV in GMSB models with messenger-matter mixing

146   0   0.0 ( 0 )
 Added by K. S. Babu
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the effects of messenger-matter mixing on the lightest CP-even Higgs boson mass m_h in gauge-mediated supersymmetry breaking models. It is shown that with such mixings m_h can be raised to about 125 GeV, even when the superparticles have sub-TeV masses, and when the gravitino has a cosmologically preferred sub-keV mass. In minimal gauge mediation without messenger-matter mixing, realizing m_h = 125 GeV would require multi-TeV SUSY spectrum. The increase in $m_h$ due to messenger-matter mixing is maximal in the case of messengers belonging to 10+bar{10} of SU(5) unification, while it is still significant when they belong to $5+bar{5}$ of SU(5). Our results are compatible with gauge coupling unification, perturbativity, and the unification of messenger Yukawa couplings. We embed these models into a grand unification framework with a U(1) flavor symmetry that addresses the fermion mass hierarchy and generates naturally large neutrino mixing angles. While SUSY mediated flavor changing processes are sufficiently suppressed in such an embedding, small new contributions to K^0-bar{K^0} mixing can resolve the apparent discrepancy in the CP asymmetry parameters sin2beta and epsilon_K.



rate research

Read More

The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, $A_t$, relaxing these constraints. The detailed survey of these models cite{Byakti:2013ti,Evans:2013kxa} so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses $sim $1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.
143 - S. Moretti , S. Munir , P. Poulose 2013
While the properties of the 125 GeV Higgs boson-like particle observed by the ATLAS and CMS collaborations are largely compatible with those predicted for the Standard Model state, significant deviations are present in some cases. We, therefore, test the viability of a Beyond the Standard Model scenario based on Supersymmetry, the CP-violating Next-to-Minimal Supersymmetric Standard Model, against the corresponding experimental observations. Namely, we identify possible model configurations in which one of its Higgs bosons is consistent with the LHC observation and evaluate the role of the explicit complex phases in both the mass and diphoton decay of such a Higgs boson. Through a detailed analysis of some benchmark points corresponding to each of these configurations, we highlight the impact of the CP-violating phases on the model predictions compared to the CP-conserving case.
The parameter space of the phenomenological MSSM (pMSSM) is explored by means of Markov Chain Monte Charlo (MCMC) methods, taking into account the latest LHC results on the Higgs signal at 125 GeV in addition to relevant low-energy observables and LEP constraints. We use a Bayesian approach to derive posterior densities for the parameters and observables of interests. We find in particular that the Higgs measurements have a significant impact on the parameters mu and tan beta due to radiative corrections to the bottom Yukawa coupling. We show moreover the impact of the most recent dark matter measurements on the probability distributions, and we discuss prospects for the next run of the LHC at 13-14 TeV.
The ATLAS and CMS experiments have recently announced the discovery of a Higgs-like resonance with mass close to 125 GeV. Overall, the data is consistent with a Standard Model (SM)-like Higgs boson. Such a particle may arise in the minimal supersymmetric extension of the SM with average stop masses of the order of the TeV scale and a sizable stop mixing parameter. In this article we discuss properties of the SM-like Higgs production and decay rates induced by the possible presence of light staus and light stops. Light staus can affect the decay rate of the Higgs into di-photons and, in the case of sizable left-right mixing, induce an enhancement in this production channel up to $sim$ 50% of the Standard Model rate. Light stops may induce sizable modifications of the Higgs gluon fusion production rate and correlated modifications to the Higgs diphoton decay. Departures from SM values of the bottom-quark and tau-lepton couplings to the Higgs can be obtained due to Higgs mixing effects triggered by light third generation scalar superpartners. We describe the phenomenological implications of light staus on searches for light stops and non-standard Higgs bosons. Finally, we discuss the current status of the search for light staus produced in association with sneutrinos, in final states containing a $W$ gauge boson and a pair of $tau$s.
We examine GUT-scale NMSSM scenarios in which {it both} $h_1$ and $h_2$ lie in the 123 -- 128 GeV mass range. Very substantially enhanced $gammagamma$ and other rates are possible. Broadened mass peaks are natural.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا