Do you want to publish a course? Click here

Prospects of forming high-spin polar molecules from ultracold atoms

130   0   0.0 ( 0 )
 Added by Matthew D. Frye
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated Feshbach resonances in collisions of high-spin atoms such as Er and Dy with closed-shell atoms such as Sr and Yb, using coupled-channel scattering and bound-state calculations. We consider both low-anisotropy and high-anisotropy limits. In both regimes we find many resonances with a wide variety of widths. The wider resonances are suitable for tuning interatomic interactions, while some of the narrower resonances are highly suitable for magnetoassociation to form high-spin molecules. These molecules might be transferred to short-range states, where they would have large magnetic moments and electric dipole moments that can be induced with very low electric fields. The results offer the opportunity to study mixed quantum gases where one species is dipolar and the other is not, and open up important prospects for a new field of ultracold high-spin polar molecules.



rate research

Read More

170 - D. Borsalino 2015
Heteronuclear alkali-metal dimers represent the class of molecules of choice for creating samples of ultracold molecules exhibiting an intrinsic large permanent electric dipole moment. Among them, the KCs molecule, with a permanent dipole moment of 1.92~Debye still remains to be observed in ultracold conditions. Based on spectroscopic studies available in the literature completed by accurate quantum chemistry calculations, we propose several optical coherent schemes to create ultracold bosonic and fermionic KCs molecules in their absolute rovibrational ground level, starting from a weakly bound level of their electronic ground state manifold. The processes rely on the existence of convenient electronically excited states allowing an efficient stimulated Raman adiabatic transfer of the level population.
We report the measurement of the anisotropic AC polarizability of ultracold polar $^{40}$K$^{87}$Rb molecules in the ground and first rotationally excited states. Theoretical analysis of the polarizability agrees well with experimental findings. Although the polarizability can vary by more than 30%, a magic angle between the laser polarization and the quantization axis is found where the polarizability of the $|N=0,m_N=0>$ and the $|N=1,m_N=0>$ states match. At this angle, rotational decoherence due to the mismatch in trapping potentials is eliminated, and we observe a sharp increase in the coherence time. This paves the way for precise spectroscopic measurements and coherent manipulations of rotational states as a tool in the creation and probing of novel quantum many-body states of polar molecules.
We investigate the use of microwave radiation to produce a repulsive shield between pairs of ultracold polar molecules and prevent collisional losses that occur when molecular pairs reach short range. We carry out coupled-channels calculations on RbCs+RbCs and CaF+CaF collisions in microwave fields. We show that effective shielding requires predominantly circular polarization, but can still be achieved with elliptical polarization that is around 90% circular.
We show that indirect spin-spin interactions between effective spin-1/2 systems can be realized in two parallel 1D optical lattices loaded with polar molecules and/or Rydberg atoms. The effective spin can be encoded into low-energy rotational states of polar molecules or long-lived states of Rydberg atoms, tightly trapped in a deep optical lattice. The spin-spin interactions can be mediated by Rydberg atoms, placed in a parallel shallow optical lattice, interacting with the effective spins by charge-dipole (for polar molecules) or dipole-dipole (for Rydberg atoms) interaction. Indirect XX, Ising and XXZ interactions with interaction coefficients $J^{bot}$ and $J^{zz}$ sign varying with interspin distance can be realized, in particular, the $J_{1}-J_{2}$ XXZ model with frustrated ferro-(antiferro-)magnetic nearest (next-nearest) neighbor interactions.
We report the creation and characterization of a near quantum-degenerate gas of polar $^{40}$K-$^{87}$Rb molecules in their absolute rovibrational ground state. Starting from weakly bound heteronuclear KRb Feshbach molecules, we implement precise control of the molecular electronic, vibrational, and rotational degrees of freedom with phase-coherent laser fields. In particular, we coherently transfer these weakly bound molecules across a 125 THz frequency gap in a single step into the absolute rovibrational ground state of the electronic ground potential. Phase coherence between lasers involved in the transfer process is ensured by referencing the lasers to two single components of a phase-stabilized optical frequency comb. Using these methods, we prepare a dense gas of $4cdot10^4$ polar molecules at a temperature below 400 nK. This fermionic molecular ensemble is close to quantum degeneracy and can be characterized by a degeneracy parameter of $T/T_F=3$. We have measured the molecular polarizability in an optical dipole trap where the trap lifetime gives clues to interesting ultracold chemical processes. Given the large measured dipole moment of the KRb molecules of 0.5 Debye, the study of quantum degenerate molecular gases interacting via strong dipolar interactions is now within experimental reach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا