Do you want to publish a course? Click here

Does dark matter consist of baryons of new stable family quarks?

247   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the possibility that the dark matter consists of clusters of the heavy family quarks and leptons with zero Yukawa couplings to the lower families. Such a family is predicted by the {it approach unifying spin and charges} as the fifth family. We make a rough estimation of properties of baryons of this new family members, of their behaviour during the evolution of the universe and when scattering on the ordinary matter and study possible limitations on the family properties due to the cosmological and direct experimental evidences.



rate research

Read More

We investigate the possibility that the dark matter consists of clusters of the heavy family quarks and leptons with zero Yukawa couplings to the lower families. Such a family is predicted by the approach unifying spins and charges as the fifth family. We make a rough estimation of properties of baryons of this new family members and study possible limitations on the family properties due to the direct experimental and the cosmological evidences, studying the cosmological evolution of the fifth family clusters.
Existence of metastable quarks of new generation can be embedded into phenomenology of heterotic string together with new long range interaction, which only this new generation possesses. We discuss primordial quark production in the early Universe, their successive cosmological evolution and astrophysical effects, as well as possible production in present or future accelerators. In case of a charge symmetry of 4th generation quarks in Universe, they can be stored in neutral mesons, doubly positively charged baryons, while all the doubly negatively charged baryons are combined with He-4 into neutral nucleus-size atom-like states. The existence of all these anomalous stable particles may escape present experimental limits, being close to present and future experimental test. Due to the nuclear binding with He-4 primordial lightest baryons of the 4th generation with charge +1 can also escape the experimental upper limits on anomalous isotopes of hydrogen, being compatible with upper limits on anomalous lithium. While 4th quark hadrons are rare, their presence may be nearly detectable in cosmic rays, muon and neutrino fluxes and cosmic electromagnetic spectra. In case of charge asymmetry, a nontrivial solution for the problem of dark matter (DM) can be provided by excessive (meta)stable anti-up quarks of 4th generation, bound with He-4 in specific nuclear-interacting form of dark matter. Such candidate to DM is surprisingly close to Warm Dark Matter by its role in large scale structure formation. It catalyzes primordial heavy element production in Big Bang Nucleosynthesis and new types of nuclear transformations around us.
After a discussion of the properties od degenerate fermion balls, we analize the orbits of the star S0-1, which has the smallest projected distance to Sgr A*, in the supermassive black hole as well as in the fermion ball scenarios of the Galactic center. It is shown that both scenarios are consistent with the data,as measured during the last six yiers by Genzel ae al. and Ghez et al.. We then consider a self-gravitating ideal fermion gas at nonzero temperature as a model for the Galactic halo. The Galactic halo of mass ~2 x 10^12 Msol enclosed within a radius of ~200 kpc implies the existence of a supermassive compact dark object at the Galactic center that is in hydrostatic and thermal equilibrium with the halo. The central object has a maximal mass of ~2.3 x 10^6 Msol within a minimal radius of ~18 mpc for fermion masses ~15 keV. We thus conclude that both the supermassive compact dark object and the halo could be made of the same weakly interacting ~15 keV particle.
161 - Joerg Jaeckel 2013
Dark matter made from non-thermally produced bosons can have very low, possibly sub-eV masses. Axions and hidden photons are prominent examples of such dark very weakly interacting light (slim) particles (WISPs). A suitable mechanism for their non-thermal production is the misalignment mechanism. Their dominant interaction with Standard Model (SM) particles is via photons. In this note we want to go beyond these standard examples and discuss a wide range of scalar and pseudo-scalar bosons interacting with SM matter fermions via derivative interactions. Suitably light candidates arise naturally as pseudo-Nambu-Goldstone bosons. In particular we are interested in examples, inspired by familons, whose interactions have a non-trivial flavor structure.
The Approach unifying spin and charges, assuming that all the internal degrees of freedom---the spin, all the charges and the families---originate in $d > (1+3)$ in only two kinds of spins (the Dirac one and the only one existing beside the Dirac one and anticommuting with the Dirac one), is offering a new way in understanding the appearance of the families and the charges (in the case of charges the similarity with the Kaluza-Klein-like theories must be emphasized). A simple starting action in $d >(1+3)$ for gauge fields (the vielbeins and the two kinds of the spin connections) and a spinor (which carries only two kinds of spins and interacts with the corresponding gauge fields) manifests after particular breaks of the starting symmetry the massless four (rather than three) families with the properties as assumed by the Standard model for the three known families, and the additional four massive families. The lowest of these additional four families is stable. A part of the starting action contributes, together with the vielbeins, in the break of the electroweak symmetry manifesting in $d=(1+3)$ the Yukawa couplings (determining the mixing matrices and the masses of the lower four families of fermions and influencing the properties of the higher four families) and the scalar field, which determines the masses of the gauge fields. The fourth family might be seen at the LHC, while the stable fifth family might be what is observed as the dark matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا