No Arabic abstract
We present experimental results of the upper critical fields $H_{rm c2}$ of various MgB$_2$ thin films prepared by the molecular beam epitaxy, multiple-targets sputtering, and co-evaporation deposition apparatus. Experimental data of the $H_{rm c2}(T)$ are successfully analyzed by applying the Gurevich theory of dirty two-band superconductivity in the case of $D_{pi}/D_{sigma}>1$, where $D_{pi}$ and $D_{sigma}$ are the intraband electron diffusivities for $pi$ and $sigma$ bands, respectively. We find that the parameters obtained from the analysis are strongly correlated to the superconducting transition temperature $T_{rm c}$ of the films. We also discuss the anormalous narrowing of the transition width at intermediate temperatures confirmed by the magnetoresistance measurements.
Critical fields of four MgB2 thin films with a normal state resistivity ranging from 5 to 50 mWcm and Tc from 29.5 to 38.8 K were measured up to 28 T. Hc2(T) curves present a linear behavior towards low temperatures. Very high critical field values have been found, up to 24 T along the c-axis and 57 T in the basal plane not depending on the normal state resistivity values. In this paper, critical fields will be analyzed taking into account the multiband nature of MgB2; we will show that resistivity and upper critical fields can be ascribed to different scattering mechanisms.
We investigate the influence of carbon-ion irradiation on the superconducting critical properties of MgB$_2$ thin films. MgB$_2$ films of two thicknesses viz. 400 nm (MB400nm) and 800 nm (MB800nm) were irradiated by 350 keV C ions having a wide range of fluence, 1 x 10$^{13}$ - 1 x 10$^{15}$ C atoms/cm$^2$. The mean projected range ($R_p$) of 350 keV C ions in MgB$_2$ is 560 nm, thus the energetic C ions will pass through the MB400nm, whereas the ions will remain into the MB800nm. The superconducting transition temperature ($T_c$), upper critical field ($H_{c2}$), $c$-axis lattice parameter, and corrected residual resistivity ($rho_{corr}$) of both the films showed similar trends with the variation of fluence. However, a disparate behavior in the superconducting phase transition was observed in the MB800nm when the fluence was larger than 1 x 10$^{14}$ C atoms/cm$^2$ because of the different Tcs between the irradiated and non-irradiated parts of the film. Interestingly, the superconducting critical properties, such as $T_c$, $H_{c2}$, and $J_c$, of the irradiated MgB$_2$ films, as well as the lattice parameter, were almost restored to those in the pristine state after a thermal annealing procedure. These results demonstrate that the atomic lattice distortion induced by C-ion irradiation is the main reason for the change in the superconducting properties of MgB$_2$ films.
We studied the specific heat and thermal conductivity of the spin-triplet superconductor Sr2RuO4 at low temperatures and under oriented magnetic fields H. We resolved a double peak structure of the superconducting transition under magnetic field for the first time, which provides thermodynamic evidence for the existence of multiple superconducting phases. We also found a clear limiting of the upper critical field Hc2 for the field direction parallel to the RuO2 plane only within 2 degrees. The limiting of Hc2 occurs in the same H-T domain of the second superconducting phase; we suggest that the two phenomena have the same physical origin.
The optical response of the two-band superconductor MgB$_2$ has been studied in the 0.7-4 THz range on films with very low impurity level. The effect of the high-energy $sigma$-gap is observed in the ratio $R_S/R_N$ between the normal and superconducting state reflectance, while in a neutron irradiated film with a slightly higher impurity level mainly the effect of the $pi$-gap is evident as reported in previous experiments. At terahertz frequencies, the electrodynamic of MgB$_2$ can be well described by the two-band parallel conductivity model and is dominated by the $pi$-bands when the impurity level is only slightly higher than that of an ultra-clean sample.
We have carried out high-field resistivity measurements up to 27,T in EuFe$_2$As$_2$ at $P$,=,2.5,GPa, a virtually optimal pressure for the $P$-induced superconductivity, where $T_mathrm{c}$,=,30,K. The $B_mathrm{c2}-T_mathrm{c}$ phase diagram has been constructed in a wide temperature range with a minimum temperature of 1.6 K ($approx 0.05 times T_mathrm{c}$), for both $B parallel ab$ ($B_mathrm{c2}^mathrm{ab}$) and $B parallel c$ ($B_mathrm{c2}^mathrm{c}$). The upper critical fields $B_mathrm{c2}^mathrm{ab}$(0) and $B_mathrm{c2}^mathrm{c}$(0), determined by the onset of resistive transitions, are 25 T and 22 T, respectively, which are significantly smaller than those of other Fe-based superconductors with similar values of $T_mathrm{c}$. The small $B_mathrm{c2}(0)$ values and the $B_mathrm{c2}(T)$ curves with positive curvature around 20 K can be explained by a multiple pair-breaking model that includes the exchange field due to the magnetic Eu$^{2+}$ moments. The anisotropy parameter, $Gamma=B_mathrm{c2}^{ab}/B_mathrm{c2}^{c}$, in EuFe$_2$As$_2$ at low temperatures is comparable to that of other 122 Fe-based systems.