Do you want to publish a course? Click here

On the viscous Cahn-Hilliard equation with singular potential and inertial term

412   0   0.0 ( 0 )
 Added by Giulio Schimperna
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We consider a relaxation of the viscous Cahn-Hilliard equation induced by the second-order inertial term~$u_{tt}$. The equation also contains a semilinear term $f(u)$ of singular type. Namely, the function $f$ is defined only on a bounded interval of ${mathbb R}$ corresponding to the physically admissible values of the unknown $u$, and diverges as $u$ approaches the extrema of that interval. In view of its interaction with the inertial term $u_{tt}$, the term $f(u)$ is difficult to be treated mathematically. Based on an approach originally devised for the strongly damped wave equation, we propose a suitable concept of weak solution based on duality methods and prove an existence result.

rate research

Read More

P. Galenko et al. proposed a modified Cahn-Hilliard equation to model rapid spinodal decomposition in non-equilibrium phase separation processes. This equation contains an inertial term which causes the loss of any regularizing effect on the solutions. Here we consider an initial and boundary value problem for this equation in a two-dimensional bounded domain. We prove a number of results related to well-posedness and large time behavior of solutions. In particular, we analyze the existence of bounded absorbing sets in two different phase spaces and, correspondingly, we establish the existence of the global attractor. We also demonstrate the existence of an exponential attractor.
We consider a non-isothermal modified Cahn--Hilliard equation which was previously analyzed by M. Grasselli et al. Such an equation is characterized by an inertial term and a viscous term and it is coupled with a hyperbolic heat equation. The resulting system was studied in the case of no-flux boundary conditions. Here we analyze the case in which the order parameter is subject to a dynamic boundary condition. This assumption requires a more refined strategy to extend the previous results to the present case. More precisely, we first prove the well-posedness for solutions with bounded energy as well as for weak solutions. Then we establish the existence of a global attractor. Finally, we prove the convergence of any given weak solution to a single equilibrium by using a suitable Lojasiewicz--Simon inequality.
We consider a Cahn-Hilliard equation which is the conserved gradient flow of a nonlocal total free energy functional. This functional is characterized by a Helmholtz free energy density, which can be of logarithmic type. Moreover, the spatial interactions between the different phases are modeled by a singular kernel. As a consequence, the chemical potential $mu$ contains an integral operator acting on the concentration difference $c$, instead of the usual Laplace operator. We analyze the equation on a bounded domain subject to no-flux boundary condition for $mu$ and by assuming constant mobility. We first establish the existence and uniqueness of a weak solution and some regularity properties. These results allow us to define a dissipative dynamical system on a suitable phase-space and we prove that such a system has a (connected) global attractor. Finally, we show that a Neumann-like boundary condition can be recovered for $c$, provided that it is supposed to be regular enough.
We consider a stochastic partial differential equation with logarithmic (or negative power) nonlinearity, with one reflection at 0 and with a constraint of conservation of the space average. The equation, driven by the derivative in space of a space-time white noise, contains a bi-Laplacian in the drift. The lack of the maximum principle for the bi-Laplacian generates difficulties for the classical penalization method, which uses a crucial monotonicity property. Being inspired by the works of Debussche and Zambotti, we use a method based on infinite dimensional equations, approximation by regular equations and convergence of the approximated semi-group. We obtain existence and uniqueness of solution for nonnegative intial conditions, results on the invariant measures, and on the reflection measures.
We prove existence, uniqueness, regularity and separation properties for a nonlocal Cahn-Hilliard equation with a reaction term. We deal here with the case of logarithmic potential and degenerate mobility as well an uniformly lipschitz in $u$ reaction term $g(x,t,u).$
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا