No Arabic abstract
The interplay of electron-phonon (el-ph) and electron-electron (el-el) interactions in epitaxial graphene is studied by directly probing its electronic structure. We found a strong coupling of electrons to the soft part of the A1g phonon evident by a kink at 150+/-15 meV, while the coupling of electrons to another expected phonon E2g at 195 meV can only be barely detected. The possible role of the el-el interaction to account for the enhanced coupling of electrons to the A1g phonon, and the contribution of el-ph interaction to the linear imaginary part of the self energy at high binding energy are also discussed. Our results reveal the dominant role of the A1g phonon in the el-ph interaction in graphene, and highlight the important interplay of el-el and el-ph interactions in the self energy of graphene.
We separate localization and interaction effects in epitaxial graphene devices grown on the C-face of a 4H-SiC substrate by analyzing the low temperature conductivities. Weak localization and antilocalization are extracted at low magnetic fields, after elimination of a geometric magnetoresistance and subtraction of the magnetic field dependent Drude conductivity. The electron electron interaction correction is extracted at higher magnetic fields, where localization effects disappear. Both phenomena are weak but sizable and of the same order of magnitude. If compared to graphene on silicon dioxide, electron electron interaction on epitaxial graphene are not significantly reduced by the larger dielectric constant of the SiC substrate.
The Raman peak position and linewidth provide insight into phonon anharmonicity and electron-phonon interactions (EPI) in materials. For monolayer graphene, prior first-principles calculations have yielded decreasing linewidth with increasing temperature, which is opposite to measurement results. Here, we explicitly consider four-phonon anharmonicity, phonon renormalization, and electron-phonon coupling, and find all to be important to successfully explain both the $G$ peak frequency shift and linewidths in our suspended graphene sample at a wide temperature range. Four-phonon scattering contributes a prominent linewidth that increases with temperature, while temperature dependence from EPI is found to be reversed above a doping threshold ($hbaromega_G/2$, with $omega_G$ being the frequency of the $G$ phonon).
We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the dielectric environment, on the index of Landau level involved, and to vary as a function of the magnetic field. This contradicts the single-particle picture of non-interacting massless Dirac electrons, but is accounted for by theory when the effect of electron-electron interaction is taken into account. Raman active, zero-momentum inter Landau level excitations in graphene are sensitive to electron-electron interactions due to the non-applicability of the Kohn theorem in this system, with a clearly non-parabolic dispersion relation.
Ultrashort light pulses can selectively excite charges, spins and phonons in materials, providing a powerful approach for manipulating their properties. Here we use femtosecond laser pulses to coherently manipulate the electron and phonon distributions, and their couplings, in the charge density wave (CDW) material 1T-TaSe$_2$. After exciting the material with a short light pulse, spatial smearing of the electrons launches a coherent lattice breathing mode, which in turn modulates the electron temperature. This indicates a bi-directional energy exchange between the electrons and the strongly-coupled phonons. By tuning the laser excitation fluence, we can control the magnitude of the electron temperature modulation, from ~ 200 K in the case of weak excitation, to ~ 1000 K for strong laser excitation. This is accompanied by a switching of the dominant mechanism from anharmonic phonon-phonon coupling to coherent electron-phonon coupling, as manifested by a phase change of $pi$ in the electron temperature modulation. Our approach thus opens up possibilities for coherently manipulating the interactions and properties of quasi-2D and other quantum materials using light.
Systems with strong electron-phonon couplings typically exhibit various forms of charge order, while strong electron-electron interactions lead to magnetism. We use determinant quantum Monte Carlo (DQMC) calculations to solve a model on a square lattice with a caricature of these interactions. In the limit where electron-electron interactions dominate it has antiferromagnetic (AF) order, while where electron-phonon coupling dominates there is columnar valence-bond solid (VBS) order. We find a novel intervening phase that hosts coexisting nematic and antiferromagnetic orders. We have also found evidence of a Landau-forbidden continuous quantum phase transition with an emergent $O(4)$ symmetry between the VBS and the nematic antiferromagnetic phases.