No Arabic abstract
A central line of inquiry in condensed matter science has been to understand how the competition between different states of matter give rise to emergent physical properties. Perhaps some of the most studied systems in this respect are the hole-doped LaMnO$_3$ perovskites, with interest in the past three decades being stimulated on account of their colossal magnetoresistance (CMR). However, phase segregation between ferromagnetic (FM) metallic and antiferromagnetic (AFM) insulating states, which itself is believed to be responsible for the colossal change in resistance under applied magnetic field, has until now prevented a full atomistic level understanding of the orbital ordered (OO) state at the optimally doped level. Here, through the detailed crystallographic analysis of the hole-doped phase diagram of a prototype system, we show that the superposition of two distinct lattice modes gives rise to a striped structure of OO Jahn-Teller active Mn$^{3+}$ and charge disordered (CD) Mn$^{3.5+}$ layers in a 1:3 ratio. This superposition leads to an exact cancellation of the Jahn-Teller-like oxygen atom displacements in the CD layers only at the 3/8th doping level, coincident with the maximum CMR response of the manganties. Furthermore, the periodic striping of layers containing Mn$^{3.5+}$, separated by layers of fully ordered Mn$^{3+}$, provides a natural mechanism though which long range OO can melt, a prerequisite for the emergence of the FM conducting state. The competition between insulating and conducting states is seen to be a key feature in understanding the properties in highly correlated electron systems, many of which, such as the CMR and high temperature superconductivity, only emerge at or near specific doping values.
We review our recent x-ray scattering studies of charge and orbital order in doped manganites, with specific emphasis on the role of orbital correlations in Pr_1-xCa_xMnO_3. For x=0.25, we find an orbital structure indistinguishable from the undoped structure with long range orbital order at low temperatures. For dopings 0.3<x<0.5, we find scattering consistent with a charge and orbitally ordered CE-type structure. While in each case the charge order peaks are resolution limited, the orbital order exhibits only short range correlations. We report the doping dependence of the correlation length and discuss the connection between the orbital correlations and the finite magnetic correlation length observed on the Mn^3+ sublattice with neutron scattering techniques. The physical origin of these domains, which appear to be isotropic, remains unclear. We find that weak orbital correlations persist well above the phase transitions, with a correlation length of 1-2 lattice constants at high temperatures. Significantly, we observe similar correlations at high temperatures in La_0.7Ca_0.3MnO_3, which does not have an orbitally ordered ground state, and we conclude that such correlations are robust to variations in the relative strength of the electron-phonon coupling.
The nature of the polarons in the optimally doped colossal magnetoresistive (CMR) materials La0.7Ba0.3MnO3 (LBMO) and La0.7Sr0.3MnO3 (LSMO) is studied by elastic and inelastic neutron scattering. In both materials, dynamic nanoscale polaron correlations develop abruptly in the ferromagnetic state. However, the polarons are not able to lock-in to the lattice and order, in contrast to the behavior of La0.7Ca0.3MnO3. Therefore ferromagnetic order in LBMO and LSMO survives their formation, explaining the conventional second order nature of the ferromagnetic--paramagnetic transition. Nevertheless, the results demonstrate that the fundamental mechanism of polaron formation is a universal feature of these ferromagnetic perovskite manganites.
We study an effective one-dimensional (1D) orbital t-J model derived for strongly correlated e_g electrons in doped manganites. The ferromagnetic spin order at half filling is supported by orbital superexchange prop. to J which stabilizes orbital order with alternating x^2-y^2 and 3z^2-r^2 orbitals. In a doped system it competes with the kinetic energy prop. to t. When a single hole is doped to a half-filled chain, its motion is hindered and a localized orbital polaron is formed. An increasing doping generates either separated polarons or phase separation into hole-rich and hole-poor regions, and eventually polarizes the orbitals and gives a it metallic phase with occupied 3z^2-r^2 orbitals. This crossover, investigated by exact diagonalization at zero temperature, is demonstrated both by the behavior of correlation functions and by spectral properties, showing that the orbital chain with Ising superexchange is more classical and thus radically different from the 1D spin t-J model. At finite temperature we derive and investigate an effective 1D orbital model using a combination of exact diagonalization with classical Monte-Carlo for spin correlations. A competition between the antiferromagnetic and ferromagnetic spin order was established at half filling, and localized polarons were found for antiferromagnetic interactions at low hole doping. Finally, we clarify that the Jahn-Teller alternating potential stabilizes the orbital order with staggered orbitals, inducing the ferromagnetic spin order and enhancing the localized features in the excitation spectra. Implications of these findings for colossal magnetoresistance manganites are discussed.
The ferromagnetic Kondo lattice model with an antiferromagnetic interaction between localized spins is a minimal description of the competing kinetic t and magnetic K energy terms which generate the rich physics of manganite systems. Motivated by the discovery in one dimension of homogeneous ``island phases, we consider the possibility of analogous phases in higher dimensions. We characterize the phases present at commensurate fillings, and consider in detail the effects of phase separation in all filling and parameter regimes. We deduce that island and flux phases are stable for intermediate values of K/t at the commensurate fillings n = 1/4, 1/3, 3/8, and 1/2. We discuss the connection of these results to the charge and magnetic ordering observed in a wide variety of manganite compounds.
The relationship between orbital and spin degrees of freedom in the single-crystals of the hole-doped Pr$_{1-x}$Ca$_{1+x}$MnO$_4$, 0.3 $leq$ $x$ $leq$ 0.7, has been investigated by means of ac-magnetometry and charge transport. Even though there is no cation ordering on the $A$-site, the quenched disorder is extremely weak in this system due to the very similar ionic size of Pr$^{3+}$ and Ca$^{2+}$. A clear asymmetric response of the system to the under- (respective over-) hole doping was observed. The long-ranged charge-orbital order established for half doping ($x$=0.5) subsists in the over-doping case ($x$ $>$ 0.5), albeit rearranged to accommodate the extra holes introduced in the structure. The charge-orbital order is however destabilized by the presence of extra localized electrons (under-doping, $x$ $<$ 0.5), leading to its disappearance below $x$=0.35. We show that in an intermediate under-doped region, with 0.35 $leq$ $x$ $<$ 0.5, the ``orbital-master spin-slave relationship commonly observed in half-doped manganites does not take place. The long-ranged charge-orbital order is not accompanied by an antiferromagnetic transition at low temperatures, but by a frustrated short-ranged magnetic state bringing forth a spin-glass phase. We discuss in detail the nature and origin of this spin-glass state, which, as in the half-doped manganites with large quenched disorder, is not related to the macroscopic phase separation observed in crystals with minor defects or impurities.