Do you want to publish a course? Click here

Sites for Gamma-ray Astronomy in Argentina

182   0   0.0 ( 0 )
 Added by Adrian Rovero C.
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have searched for possible sites in Argentina for the installation of large air Cherenkov telescope arrays and water Cherenkov systems. At present seven candidates are identified at altitudes from 2500 to 4500 m. The highest sites are located at the Northwest of the country, in La Puna. Sites at 2500 and 3100 m are located in the West at El Leoncito Observatory, with excellent infrastructure. A description of these candidate sites is presented with emphasis on infrastructure and climatology.



rate research

Read More

The Cherenkov Telescope Array (CTA) Project will consist of two arrays of atmospheric Cherenkov telescopes to study high-energy gamma radiation in the range of a few tens of GeV to beyond 100 TeV. To achieve full-sky coverage, the construction of one array in each terrestrial hemisphere is considered. Suitable candidate sites are being explored and characterized. The candidate sites in the Southern Hemisphere include two locations in Argentina, one in San Antonio de los Cobres (Salta Province, Lat. 24:02:42 S, Long. 66:14:06 W, at 3600 m.a.s.l) and another one in El Leoncito (San Juan Province, Lat. 31:41:49 S, Long. 69:16:21 W, at 2600 m.a.s.l). Here we describe the two sites and the instrumentation that has been deployed to characterize them. We summarize the geographic, atmospheric and climatic data that have been collected for both of them.
We describe a straightforward modification of frequently invoked methods for the determination of the statistical significance of a gamma-ray signal observed in a counting process. A simple criterion is proposed to decide whether a set of measurements of the numbers of photons registered in the source and background regions is consistent with the assumption of a constant source activity. This method is particularly suitable for immediate evaluation of the stability of the observed gamma-ray signal. It is independent of the exposure estimates, reducing thus the impact of systematic inaccuracies, and properly accounts for the fluctuations in the number of detected photons. The usefulness of the method is demonstrated on several examples. We discuss intensity changes for gamma-ray emitters detected at very high energies by the current gamma-ray telescopes (e.g. 1ES 0229+200, 1ES 1959+650 and PG 1553+113). Some of the measurements are quantified to be exceptional with large statistical significances.
70 - D. Nieto , A. Brill , Q. Feng 2019
CTLearn is a new Python package under development that uses the deep learning technique to analyze data from imaging atmospheric Cherenkov telescope (IACT) arrays. IACTs use the Cherenkov light emitted from air showers, initiated by very-high-energy gamma rays, to form an image of the longitudinal development of the air shower on the camera plane. The spatial, temporal, and calorimetric information of the originating high-energy particle is then recorded electronically. The sensitivity of IACTs to astrophysical sources depends strongly on the efficient rejection of the background of much more numerous cosmic-ray showers. CTLearn includes modules for running machine learning models with TensorFlow, using pixel-wise camera data as input. Its high-level interface provides a configuration-file-based workflow to drive reproducible training and prediction. We illustrate the capabilities of CTLearn by presenting some results using IACT simulated data.
131 - Jamie Holder 2012
The field of TeV gamma-ray astronomy has produced many exciting results over the last decade. Both the source catalogue, and the range of astrophysical questions which can be addressed, continue to expand. This article presents a topical review of the field, with a focus on the observational results of the imaging atmospheric Cherenkov telescope arrays. The results encompass pulsars and their nebulae, supernova remnants, gamma-ray binary systems, star forming regions and starburst and active galaxies.
184 - Stefan Funk 2012
Gamma-ray studies are an essential tool in our search for the origin of cosmic rays. Instruments like the Fermi-LAT, H.E.S.S., MAGIC and VERITAS have revolutionized our understanding of the high energy Universe. This paper describes the status of the very rich field of gamma-ray astrophysics that contains a wealth of data on Galactic and extragalactic particle accelerators. It is the write-up of a rapporteur talk given at the 32nd ICRC in Beijing, China in which new results were presented with an emphasis on the cosmic-ray related studies of the Universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا