Do you want to publish a course? Click here

TeV Gamma-ray Astronomy: A Summary

131   0   0.0 ( 0 )
 Added by Jamie Holder
 Publication date 2012
  fields Physics
and research's language is English
 Authors Jamie Holder




Ask ChatGPT about the research

The field of TeV gamma-ray astronomy has produced many exciting results over the last decade. Both the source catalogue, and the range of astrophysical questions which can be addressed, continue to expand. This article presents a topical review of the field, with a focus on the observational results of the imaging atmospheric Cherenkov telescope arrays. The results encompass pulsars and their nebulae, supernova remnants, gamma-ray binary systems, star forming regions and starburst and active galaxies.



rate research

Read More

75 - C. Nigro , C. Deil , R. Zanin 2019
The analysis and combination of data from different gamma-ray instruments involves the use of collaboration proprietary software and case-by-case methods. The effort of defining a common data format for high-level data, namely event lists and instrument response functions (IRFs), has recently started for very-high-energy gamma-ray instruments, driven by the upcoming Cherenkov Telescope Array (CTA). In this work we implemented this prototypical data format for a small set of MAGIC, VERITAS, FACT, and H.E.S.S. Crab nebula observations, and we analyzed them with the open-source gammapy software package. By combining data from $Fermi$-LAT, and from four of the currently operating imaging atmospheric Cherenkov telescopes, we produced a joint maximum likelihood fit of the Crab nebula spectrum. Aspects of the statistical errors and the evaluation of systematic uncertainty are also commented upon, along with the release format of spectral measurements. The results presented in this work are obtained using open-access on-line assets that allow for a long-term reproducibility of the results.
All-Sky-ASTROGAM is a gamma-ray observatory operating in a broad energy range, 100 keV to a few hundred MeV, recently proposed as the Fast (F) mission of the European Space Agency for a launch in 2028 to an L2 orbit. The scientific payload is composed of a unique gamma-ray imaging monitor for astrophysical transients, with very large field of view (almost 4$pi$ sr) and optimal sensitivity to detect bright and intermediate flux sources (gamma-ray bursts, active galactic nuclei, X-ray binaries, supernovae and novae) at different timescales ranging from seconds to months. The mission will operate in a maturing gravitational wave and multi-messenger epoch, opening up new and exciting synergies.
183 - Stefan Funk 2012
Gamma-ray studies are an essential tool in our search for the origin of cosmic rays. Instruments like the Fermi-LAT, H.E.S.S., MAGIC and VERITAS have revolutionized our understanding of the high energy Universe. This paper describes the status of the very rich field of gamma-ray astrophysics that contains a wealth of data on Galactic and extragalactic particle accelerators. It is the write-up of a rapporteur talk given at the 32nd ICRC in Beijing, China in which new results were presented with an emphasis on the cosmic-ray related studies of the Universe.
55 - Frank Krennrich 2001
The field of TeV gamma-ray astronomy is reviewed with emphasis on its relation to the origin of cosmic rays. The discovery of TeV photons from supernova remnants and active galaxies has provided the first direct observational link between specific astrophysical objects and particle production at the TeV scale. TeV gamma-ray observations constrain the high end of the electromagnetic spectrum, a regime most sensitive for testing particle acceleration and emission models. TeV telescopes have made important contributions to the understanding of blazars and supernova remnants, however, it will take the next generation atmospheric Cherenkov telescopes and satellite-based gamma-ray detectors to unravel the mystery of hadronic cosmic-ray sources. A short review of TeV observations is followed by a discussion of the capabilities and scientific potential of the next generation ground-based atmospheric Cherenkov telescopes.
The High Energy Stereoscopic System (H.E.S.S.) is one of the currently operating Imaging Atmospheric Cherenkov Telescopes. H.E.S.S. operates in the broad energy range from a few tens of GeV to more than 50 TeV reaching its best sensitivity around 1 TeV. In this contribution, we present an analysis technique, which is optimised for the detection at the highest energies accessible to H.E.S.S. and aimed to improve the sensitivity above 10 TeV. It includes the employment of improved event direction reconstruction and gamma-hadron separation. For the first time, also extensive air showers with event offsets up to 4.5$^{circ}$ from the camera centre are considered in the analysis, thereby increasing the effective Field-of-View of H.E.S.S. from 5$^{circ}$ to 9$^{circ}$. Key performance parameters of the new high-energy analysis are presented and its applicability demonstrated for representative hard-spectrum sources in the Milky Way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا