No Arabic abstract
Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x)As(2) superconductors in pressures up to 2.5GPa, and elucidate the interplay between the effects of electron-doping and pressures. For the underdoped sample with nominal composition x = 0.08, application of pressure strongly suppresses a magnetic instability while enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the optimally doped x=0.20 sample shows very little enhancement of Tc=22K under applied pressure. Our results strongly suggest that the proximity to a magnetic instability is the key to the mechanism of superconductivity in iron-pnictides.
We report an NMR investigation of the superconductivity in BaFe(2)As(2) induced by Co doping (Tc=22K). We demonstrate that Co atoms form an alloy with Fe atoms and donate carriers without creating localized moments. Our finding strongly suggests that the underlying physics of iron-pnictide superconductors is quite different from the widely accepted physical picture of high Tc cuprates as doped Mott insulators. We also show a crossover of electronic properties into a low temperature pseudo-gap phase with a pseudo-gap Delta 560K, where chi(spin) constant and resisitivty T. The NMR Knight shift below Tc decreases for both along the c-axis and ab-plane, and is consistent with the singlet pairing scenario.
We report a systematic investigation of Ba[Fe(1-x)Co(x)]2As2 based on transport and 75-As NMR measurements, and establish the electronic phase diagram. We demonstrate that doping progressively suppresses the uniform spin susceptibility and low frequency spin fluctuations. The optimum superconducting phase emerges at x_c~0.08 when the tendency toward spin ordering completely diminishes. Our findings point toward the presence of a quantum critical point near x_c between the SDW (spin density wave) and superconducting phases.
We calculate the effect of local magnetic moments on the electron-phonon coupling in BaFe$_{2}$As$_{2}+delta$ using the density functional perturbation theory. We show that the magnetism enhances the total electron-phonon coupling by $sim 50%$, up to $lambda lesssim 0.35$, still not enough to explain the high critical temperature, but strong enough to have a non-negligible effect on superconductivity, for instance, by frustrating the coupling with spin fluctuations and inducing order parameter nodes. The enhancement comes mostly from a renormalization of the electron-phonon matrix elements. We also investigate, in the rigid band approximation, the effect of doping, and find that $lambda$ versus doping does not mirror the behavior of the density of states; while the latter decreases upon electron doping, the former does not, and even increases slightly.
High-transition-temperature (high-Tc) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essential to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping [1, 2] and appears to overlap with the superconducting phase. The archetypical electron-doped compound Nd{2-x}Ce{x}CuO{4pmdelta} (NCCO) shows bulk superconductivity above x approx 0.13 [3, 4], while evidence for antiferromagnetic order has been found up to x approx 0.17 [2, 5, 6]. Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases [7]. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies [8-11], arises from a build-up of spin correlations, in agreement with recent theoretical proposals [12, 13].
We use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe$_2$As$_2$ and its Co- and Ni-substituted members near optimal superconductivity. In the low temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11$%$ increase under 40 MPa for BaFe$_{1.9}$Co$_{0.1}$As$_2$, and a 15$%$ increase for BaFe$_{1.915}$Ni$_{0.085}$As$_2$. We also observe an increase of the AF ordering temperature ($T_N$) of about 0.25 K/MPa in all compounds, consistent with density functional theory calculations that reveal better Fermi surface nesting for itinerant electrons under uniaxial pressure. The doping dependence of the magnetic ordered moment is captured by combining dynamical mean field theory with density functional theory, suggesting that the pressure-induced moment increase near optimal superconductivity is closely related to quantum fluctuations and the nearby electronic nematic phase.