We report an NMR investigation of the superconductivity in BaFe(2)As(2) induced by Co doping (Tc=22K). We demonstrate that Co atoms form an alloy with Fe atoms and donate carriers without creating localized moments. Our finding strongly suggests that the underlying physics of iron-pnictide superconductors is quite different from the widely accepted physical picture of high Tc cuprates as doped Mott insulators. We also show a crossover of electronic properties into a low temperature pseudo-gap phase with a pseudo-gap Delta 560K, where chi(spin) constant and resisitivty T. The NMR Knight shift below Tc decreases for both along the c-axis and ab-plane, and is consistent with the singlet pairing scenario.
Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x)As(2) superconductors in pressures up to 2.5GPa, and elucidate the interplay between the effects of electron-doping and pressures. For the underdoped sample with nominal composition x = 0.08, application of pressure strongly suppresses a magnetic instability while enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the optimally doped x=0.20 sample shows very little enhancement of Tc=22K under applied pressure. Our results strongly suggest that the proximity to a magnetic instability is the key to the mechanism of superconductivity in iron-pnictides.
We performed polarization- and photon-energy-dependent angle-resolved photoemission spectroscopy of a slightly overdoped iron pnictide superconductor, BaFe$_{1.8}$Co$_{0.2}$As$_{2}$, to clarify the three-dimensional electronic structure including its orbital characters at the Brillouin zone center. Two hole Fermi surfaces (FSs) with $d_{xz/yz}$ and $d_{xy/x^2-y^2}$ orbitals were observed but $d_{z^2}$ hole FS, which has nodes according to a theory of the spin-fluctuation superconductivity mechanism, did not appear. These results suggest that no node will appear at hole FSs at the zone center.
We present an atomic resolution scanning tunneling spectroscopy study of superconducting BaFe$_{1.8}$Co$_{0.2}$As$_2$ single crystals in magnetic fields up to $9 text{Tesla}$. At zero field, a single gap with coherence peaks at $overline{Delta}=6.25 text{meV}$ is observed in the density of states. At $9 text{T}$ and $6 text{T}$, we image a disordered vortex lattice, consistent with isotropic, single flux quantum vortices. Vortex locations are uncorrelated with strong scattering surface impurities, demonstrating bulk pinning. The vortex-induced sub-gap density of states fits an exponential decay from the vortex center, from which we extract a coherence length $xi=27.6pm 2.9 text{AA}$, corresponding to an upper critical field $H_{c2}=43 text{T}$.
The superconducting state of an optimally doped single crystal of Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$ was investigated by $^{75}$As NMR in high magnetic fields from 6.4 T to 28 T. It was found that the Knight shift is least affected by vortex supercurrents in high magnetic fields, $H>11$ T, revealing slow, possibly higher order than linear, increase with temperature at $T lesssim 0.5 , T_c$, with $T_c approx 23 , K$. This is consistent with the extended s-wave state with $A_{1g}$ symmetry but the precise details of the gap structure are harder to resolve. Measurements of the NMR spin-spin relaxation time, $T_2$, indicate a strong indirect exchange interaction at all temperatures. Below the superconducting transition temperature vortex dynamics lead to an anomalous dip in $T_2$ at the vortex freezing transition from which we obtain the vortex phase diagram up to $H = 28$ T.
We report a systematic investigation of Ba[Fe(1-x)Co(x)]2As2 based on transport and 75-As NMR measurements, and establish the electronic phase diagram. We demonstrate that doping progressively suppresses the uniform spin susceptibility and low frequency spin fluctuations. The optimum superconducting phase emerges at x_c~0.08 when the tendency toward spin ordering completely diminishes. Our findings point toward the presence of a quantum critical point near x_c between the SDW (spin density wave) and superconducting phases.