No Arabic abstract
Approaches to machine intelligence based on brain models have stressed the use of neural networks for generalization. Here we propose the use of a hybrid neural network architecture that uses two kind of neural networks simultaneously: (i) a surface learning agent that quickly adapt to new modes of operation; and, (ii) a deep learning agent that is very accurate within a specific regime of operation. The two networks of the hybrid architecture perform complementary functions that improve the overall performance. The performance of the hybrid architecture has been compared with that of back-propagation perceptrons and the CC and FC networks for chaotic time-series prediction, the CATS benchmark test, and smooth function approximation. It has been shown that the hybrid architecture provides a superior performance based on the RMS error criterion.
Realization of deep learning with coherent diffraction has achieved remarkable development nowadays, which benefits on the fact that matrix multiplication can be optically executed in parallel as well as with little power consumption. Coherent optical field propagated in the form of complex-value entity can be manipulated into a task-oriented output with statistical inference. In this paper, we present a unitary learning protocol on deep diffractive neural network, meeting the physical unitary prior in coherent diffraction. Unitary learning is a backpropagation serving to unitary weights update through the gradient translation between Euclidean and Riemannian space. The temporal-space evolution characteristic in unitary learning is formulated and elucidated. Particularly a compatible condition on how to select the nonlinear activations in complex space is unveiled, encapsulating the fundamental sigmoid, tanh and quasi-ReLu in complex space. As a preliminary application, deep diffractive neural network with unitary learning is tentatively implemented on the 2D classification and verification tasks.
A key problem in deep multi-attribute learning is to effectively discover the inter-attribute correlation structures. Typically, the conventional deep multi-attribute learning approaches follow the pipeline of manually designing the network architectures based on task-specific expertise prior knowledge and careful network tunings, leading to the inflexibility for various complicated scenarios in practice. Motivated by addressing this problem, we propose an efficient greedy neural architecture search approach (GNAS) to automatically discover the optimal tree-like deep architecture for multi-attribute learning. In a greedy manner, GNAS divides the optimization of global architecture into the optimizations of individual connections step by step. By iteratively updating the local architectures, the global tree-like architecture gets converged where the bottom layers are shared across relevant attributes and the branches in top layers more encode attribute-specific features. Experiments on three benchmark multi-attribute datasets show the effectiveness and compactness of neural architectures derived by GNAS, and also demonstrate the efficiency of GNAS in searching neural architectures.
Automated neural network design has received ever-increasing attention with the evolution of deep convolutional neural networks (CNNs), especially involving their deployment on embedded and mobile platforms. One of the biggest problems that neural architecture search (NAS) confronts is that a large number of candidate neural architectures are required to train, using, for instance, reinforcement learning and evolutionary optimisation algorithms, at a vast computation cost. Even recent differentiable neural architecture search (DNAS) samples a small number of candidate neural architectures based on the probability distribution of learned architecture parameters to select the final neural architecture. To address this computational complexity issue, we introduce a novel emph{architecture parameterisation} based on scaled sigmoid function, and propose a general emph{Differentiable Neural Architecture Learning} (DNAL) method to optimize the neural architecture without the need to evaluate candidate neural networks. Specifically, for stochastic supernets as well as conventional CNNs, we build a new channel-wise module layer with the architecture components controlled by a scaled sigmoid function. We train these neural network models from scratch. The network optimization is decoupled into the weight optimization and the architecture optimization. We address the non-convex optimization problem of neural architecture by the continuous scaled sigmoid method with convergence guarantees. Extensive experiments demonstrate our DNAL method delivers superior performance in terms of neural architecture search cost. The optimal networks learned by DNAL surpass those produced by the state-of-the-art methods on the benchmark CIFAR-10 and ImageNet-1K dataset in accuracy, model size and computational complexity.
Deep Neural Networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labour intensive because of the trial-and-error process, and also not easy to realize due to the rare expertise in practice. Neural Architecture Search (NAS) is a type of technology that can design the architectures automatically. Among different methods to realize NAS, Evolutionary Computation (EC) methods have recently gained much attention and success. Unfortunately, there has not yet been a comprehensive summary of the EC-based NAS algorithms. This paper reviews over 200 papers of most recent EC-based NAS methods in light of the core components, to systematically discuss their design principles as well as justifications on the design. Furthermore, current challenges and issues are also discussed to identify future research in this emerging field.
Automated machine learning (AutoML) has seen a resurgence in interest with the boom of deep learning over the past decade. In particular, Neural Architecture Search (NAS) has seen significant attention throughout the AutoML research community, and has pushed forward the state-of-the-art in a number of neural models to address grid-like data such as texts and images. However, very litter work has been done about Graph Neural Networks (GNN) learning on unstructured network data. Given the huge number of choices and combinations of components such as aggregator and activation function, determining the suitable GNN structure for a specific problem normally necessitates tremendous expert knowledge and laborious trails. In addition, the slight variation of hyper parameters such as learning rate and dropout rate could dramatically hurt the learning capacity of GNN. In this paper, we propose a novel AutoML framework through the evolution of individual models in a large GNN architecture space involving both neural structures and learning parameters. Instead of optimizing only the model structures with fixed parameter settings as existing work, an alternating evolution process is performed between GNN structures and learning parameters to dynamically find the best fit of each other. To the best of our knowledge, this is the first work to introduce and evaluate evolutionary architecture search for GNN models. Experiments and validations demonstrate that evolutionary NAS is capable of matching existing state-of-the-art reinforcement learning approaches for both the semi-supervised transductive and inductive node representation learning and classification.