Do you want to publish a course? Click here

A Survey on Evolutionary Neural Architecture Search

91   0   0.0 ( 0 )
 Added by Yuqiao Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep Neural Networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labour intensive because of the trial-and-error process, and also not easy to realize due to the rare expertise in practice. Neural Architecture Search (NAS) is a type of technology that can design the architectures automatically. Among different methods to realize NAS, Evolutionary Computation (EC) methods have recently gained much attention and success. Unfortunately, there has not yet been a comprehensive summary of the EC-based NAS algorithms. This paper reviews over 200 papers of most recent EC-based NAS methods in light of the core components, to systematically discuss their design principles as well as justifications on the design. Furthermore, current challenges and issues are also discussed to identify future research in this emerging field.



rate research

Read More

Automated machine learning (AutoML) has seen a resurgence in interest with the boom of deep learning over the past decade. In particular, Neural Architecture Search (NAS) has seen significant attention throughout the AutoML research community, and has pushed forward the state-of-the-art in a number of neural models to address grid-like data such as texts and images. However, very litter work has been done about Graph Neural Networks (GNN) learning on unstructured network data. Given the huge number of choices and combinations of components such as aggregator and activation function, determining the suitable GNN structure for a specific problem normally necessitates tremendous expert knowledge and laborious trails. In addition, the slight variation of hyper parameters such as learning rate and dropout rate could dramatically hurt the learning capacity of GNN. In this paper, we propose a novel AutoML framework through the evolution of individual models in a large GNN architecture space involving both neural structures and learning parameters. Instead of optimizing only the model structures with fixed parameter settings as existing work, an alternating evolution process is performed between GNN structures and learning parameters to dynamically find the best fit of each other. To the best of our knowledge, this is the first work to introduce and evaluate evolutionary architecture search for GNN models. Experiments and validations demonstrate that evolutionary NAS is capable of matching existing state-of-the-art reinforcement learning approaches for both the semi-supervised transductive and inductive node representation learning and classification.
Neural architecture search (NAS), which automatically designs the architectures of deep neural networks, has achieved breakthrough success over many applications in the past few years. Among different classes of NAS methods, evolutionary computation based NAS (ENAS) methods have recently gained much attention. Unfortunately, the issues of fair comparisons and efficient evaluations have hindered the development of ENAS. The current benchmark architecture datasets designed for fair comparisons only provide the datasets, not the ENAS algorithms or the platform to run the algorithms. The existing efficient evaluation methods are either not suitable for the population-based ENAS algorithm or are too complex to use. This paper develops a platform named BenchENAS to address these issues. BenchENAS aims to achieve fair comparisons by running different algorithms in the same environment and with the same settings. To achieve efficient evaluation in a common lab environment, BenchENAS designs a parallel component and a cache component with high maintainability. Furthermore, BenchENAS is easy to install and highly configurable and modular, which brings benefits in good usability and easy extensibility. The paper conducts efficient comparison experiments on eight ENAS algorithms with high GPU utilization on this platform. The experiments validate that the fair comparison issue does exist, and BenchENAS can alleviate this issue. A website has been built to promote BenchENAS at https://benchenas.com, where interested researchers can obtain the source code and document of BenchENAS for free.
The performance of a deep neural network is heavily dependent on its architecture and various neural architecture search strategies have been developed for automated network architecture design. Recently, evolutionary neural architecture search (ENAS) has received increasing attention due to the attractive global optimization capability of evolutionary algorithms. However, ENAS suffers from extremely high computation costs because a large number of performance evaluations is usually required in evolutionary optimization and training deep neural networks is itself computationally very intensive. To address this issue, this paper proposes a new evolutionary framework for fast ENAS based on directed acyclic graph, in which parents are randomly sampled and trained on each mini-batch of training data. In addition, a node inheritance strategy is adopted to generate offspring individuals and their fitness is directly evaluated without training. To enhance the feature processing capability of the evolved neural networks, we also encode a channel attention mechanism in the search space. We evaluate the proposed algorithm on the widely used datasets, in comparison with 26 state-of-the-art peer algorithms. Our experimental results show the proposed algorithm is not only computationally much more efficiently, but also highly competitive in learning performance.
Performing analytical tasks over graph data has become increasingly interesting due to the ubiquity and large availability of relational information. However, unlike images or sentences, there is no notion of sequence in networks. Nodes (and edges) follow no absolute order, and it is hard for traditional machine learning (ML) algorithms to recognize a pattern and generalize their predictions on this type of data. Graph Neural Networks (GNN) successfully tackled this problem. They became popular after the generalization of the convolution concept to the graph domain. However, they possess a large number of hyperparameters and their design and optimization is currently hand-made, based on heuristics or empirical intuition. Neural Architecture Search (NAS) methods appear as an interesting solution to this problem. In this direction, this paper compares two NAS methods for optimizing GNN: one based on reinforcement learning and a second based on evolutionary algorithms. Results consider 7 datasets over two search spaces and show that both methods obtain similar accuracies to a random search, raising the question of how many of the search space dimensions are actually relevant to the problem.
153 - Xuan Wu , Linhan Jia , Xiuyi Zhang 2021
Neural architecture search (NAS) is a hot topic in the field of automated machine learning (AutoML) and has begun to outperform human-designed architectures on many machine learning tasks. Motivated by the natural representation form of neural networks by the Cartesian genetic programming (CGP), we propose an evolutionary approach of NAS based on CGP, called CGPNAS, to solve sentence classification task. To evolve the architectures under the framework of CGP, the existing key operations are identified as the types of function nodes of CGP, and the evolutionary operations are designed based on Evolutionary Strategy (ES). The experimental results show that the searched architecture can reach the accuracy of human-designed architectures, such as Transformer. The transfer study proves that the searched architectures have the certain ability for dataset transfer. The ablation study identifies the Attention function as the single key function node. In addition, only through the linear transformations, the accuracy of the searched architectures is reduced by 4%, worthy of investigation in the future.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا