Do you want to publish a course? Click here

Global existence of a non-local semilinear parabolic equation with advection and applications to shear flow

105   0   0.0 ( 0 )
 Added by Yu Feng
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we consider the following non-local semi-linear parabolic equation with advection: for $1 le p<1+frac{2}{N}$, begin{equation*} begin{cases} u_t+v cdot abla u-Delta u=|u|^p-int_{mathbb T^N} |u|^p quad & textrm{on} quad mathbb T^N, u textrm{periodic} quad & textrm{on} quad partial mathbb T^N end{cases} end{equation*} with initial data $u_0$ defined on $mathbb T^N$. Here $v$ is an incompressible flow, and $mathbb T^N=[0, 1]^N$ is the $N$-torus with $N$ being the dimension. We first prove the local existence of mild solutions to the above equation for arbitrary data in $L^2$. We then study the global existence of the solutions under the following two scenarios: (1). when $v$ is a mixing flow; (2). when $v$ is a shear flow. More precisely, we show that under these assumptions, there exists a global solution to the above equation in the sense of $L^2$.



rate research

Read More

103 - Bingyang Hu 2021
In this paper, we consider the advective Cahn-Hilliard equation in 2D with shear flow: $$ begin{cases} u_t+v_1(y) partial_x u+gamma Delta^2 u=gamma Delta(u^3-u) quad & quad textrm{on} quad mathbb T^2; u textrm{periodic} quad & quad textrm{on} quad partial mathbb T^2, end{cases} $$ where $mathbb T^2$ is the two-dimensional torus. Under the assumption that the shear has a finite number of critical points and there are linearly growing modes only in the direction of the shear, we show the global existence of solutions with arbitrary initial $H^2$ data. The main difficulty of this paper is to handle the high-regularity and non-linearity underlying the term $Delta(u^3)$ in a proper way. For such a purpose, we modify the methods by Iyer, Xu, and Zlatov{s} in 2021 under a shear flow setting.
86 - Linlin Sun , Jingyong Zhu 2020
We consider an evolution problem associated to the Kazdan-Warner equation on a closed Riemann surface $(Sigma,g)$ begin{align*} -Delta_{g}u=8pileft(frac{he^{u}}{int_{Sigma}he^{u}{rm d}mu_{g}}-frac{1}{int_{Sigma}{rm d}mu_{g}}right) end{align*} where the prescribed function $hgeq0$ and $max_{Sigma}h>0$. We prove the global existence and convergence under additional assumptions such as begin{align*} Delta_{g}ln h(p_0)+8pi-2K(p_0)>0 end{align*} for any maximum point $p_0$ of the sum of $2ln h$ and the regular part of the Green function, where $K$ is the Gaussian curvature of $Sigma$. In particular, this gives a new proof of the existence result by Yang and Zhu [Proc. Amer. Math. Soc. 145 (2017), no. 9, 3953-3959] which generalizes existence result of Ding, Jost, Li and Wang [Asian J. Math. 1 (1997), no. 2, 230-248] to the non-negative prescribed function case.
The local and global existence of the Cauchy problem for semilinear heat equations with small data is studied in the weighted $L^infty (mathbb R^n)$ framework by a simple contraction argument. The contraction argument is based on a weighted uniform control of solutions related with the free solutions and the first iterations for the initial data of negative power.
68 - Anup Biswas 2018
We consider a class of semilinear nonlocal problems with vanishing exterior condition and establish a Ambrosetti-Prodi type phenomenon when the nonlinear term satisfies certain conditions. Our technique makes use of the probabilistic tools and heat kernel estimates.
Considered herein is a multi-component Novikov equation, which admits bi-Hamiltonian structure, infinitely many conserved quantities and peaked solutions. In this paper, we deduce two blow-up criteria for this system and global existence for some two-component case in $H^s$. Finally we verify that the system possesses peakons and periodic peakons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا