Do you want to publish a course? Click here

On the frequentist coverage of Bayesian credible intervals for lower bounded means

176   0   0.0 ( 0 )
 Added by \\'Eric Marchand
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

For estimating a lower bounded location or mean parameter for a symmetric and logconcave density, we investigate the frequentist performance of the $100(1-alpha)%$ Bayesian HPD credible set associated with priors which are truncations of flat priors onto the restricted parameter space. Various new properties are obtained. Namely, we identify precisely where the minimum coverage is obtained and we show that this minimum coverage is bounded between $1-frac{3alpha}{2}$ and $1-frac{3alpha}{2}+frac{alpha^2}{1+alpha}$; with the lower bound $1-frac{3alpha}{2}$ improving (for $alpha leq 1/3$) on the previously established ([9]; [8]) lower bound $frac{1-alpha}{1+alpha}$. Several illustrative examples are given.



rate research

Read More

We investigate the frequentist coverage properties of Bayesian credible sets in a general, adaptive, nonparametric framework. It is well known that the construction of adaptive and honest confidence sets is not possible in general. To overcome this problem we introduce an extra assumption on the functional parameters, the so called general polished tail condition. We then show that under standard assumptions both the hierarchical and empirical Bayes methods results in honest confidence sets for sieve type of priors in general settings and we characterize their size. We apply the derived abstract results to various examples, including the nonparametric regression model, density estimation using exponential families of priors, density estimation using histogram priors and nonparametric classification model, for which we show that their size is near minimax adaptive with respect to the considered specific semi-metrics.
Variable selection in the linear regression model takes many apparent faces from both frequentist and Bayesian standpoints. In this paper we introduce a variable selection method referred to as a rescaled spike and slab model. We study the importance of prior hierarchical specifications and draw connections to frequentist generalized ridge regression estimation. Specifically, we study the usefulness of continuous bimodal priors to model hypervariance parameters, and the effect scaling has on the posterior mean through its relationship to penalization. Several model selection strategies, some frequentist and some Bayesian in nature, are developed and studied theoretically. We demonstrate the importance of selective shrinkage for effective variable selection in terms of risk misclassification, and show this is achieved using the posterior from a rescaled spike and slab model. We also show how to verify a procedures ability to reduce model uncertainty in finite samples using a specialized forward selection strategy. Using this tool, we illustrate the effectiveness of rescaled spike and slab models in reducing model uncertainty.
136 - Michael Evans , Yang Guo 2019
A common concern with Bayesian methodology in scientific contexts is that inferences can be heavily influenced by subjective biases. As presented here, there are two types of bias for some quantity of interest: bias against and bias in favor. Based upon the principle of evidence, it is shown how to measure and control these biases for both hypothesis assessment and estimation problems. Optimality results are established for the principle of evidence as the basis of the approach to these problems. A close relationship is established between measuring bias in Bayesian inferences and frequentist properties that hold for any proper prior. This leads to a possible resolution to an apparent conflict between these approaches to statistical reasoning. Frequentism is seen as establishing a figure of merit for a statistical study, while Bayesianism plays the key role in determining inferences based upon statistical evidence.
83 - David M. Kaplan 2016
Bayesian and frequentist criteria are fundamentally different, but often posterior and sampling distributions are asymptotically equivalent (e.g., Gaussian). For the corresponding limit experiment, we characterize the frequentist size of a certain Bayesian hypothesis test of (possibly nonlinear) inequalities. If the null hypothesis is that the (possibly infinite-dimensional) parameter lies in a certain half-space, then the Bayesian tests size is $alpha$; if the null hypothesis is a subset of a half-space, then size is above $alpha$ (sometimes strictly); and in other cases, size may be above, below, or equal to $alpha$. Two examples illustrate our results: testing stochastic dominance and testing curvature of a translog cost function.
Until recently mass-mapping techniques for weak gravitational lensing convergence reconstruction have lacked a principled statistical framework upon which to quantify reconstruction uncertainties, without making strong assumptions of Gaussianity. In previous work we presented a sparse hierarchical Bayesian formalism for convergence reconstruction that addresses this shortcoming. Here, we draw on the concept of local credible intervals (cf. Bayesian error bars) as an extension of the uncertainty quantification techniques previously detailed. These uncertainty quantification techniques are benchmarked against those recovered via Px-MALA - a state of the art proximal Markov Chain Monte Carlo (MCMC) algorithm. We find that typically our recovered uncertainties are everywhere conservative, of similar magnitude and highly correlated (Pearson correlation coefficient $geq 0.85$) with those recovered via Px-MALA. Moreover, we demonstrate an increase in computational efficiency of $mathcal{O}(10^6)$ when using our sparse Bayesian approach over MCMC techniques. This computational saving is critical for the application of Bayesian uncertainty quantification to large-scale stage IV surveys such as LSST and Euclid.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا