Do you want to publish a course? Click here

Evolution of an Unconventional Superconducting State inside the Antiferromagnetic Phase of CeNiGe$_3$ under Pressure: a $^{73}$Ge-Nuclear-Quadrupole-Resonance Study

182   0   0.0 ( 0 )
 Added by Atsushi Harada
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a $^{73}$Ge nuclear-quadrupole-resonance (NQR) study on novel evolution of unconventional superconductivity in antiferromagnetic (AFM) CeNiGe$_3$. The measurements of the $^{73}$Ge-NQR spectrum and the nuclear spin-lattice relaxation rate ($1/T_1$) have revealed that the unconventional superconductivity evolves inside a commensurate AFM phase around the pressure ($P$) where N{e}el temperature $T_{rm N}$ exhibits its maximum at 8.5 K. The superconducting transition temperature $T_{rm SC}$ has been found to be enhanced with increasing $T_{rm N}$, before reaching the quantum critical point at which the AFM order collapses. Above $T_{rm SC}$, the AFM structure transits from an incommensurate spin-density-wave order to a commensurate AFM order at $Tsim 2$ K, accompanied by a longitudinal spin-density fluctuation. With regard to heavy-fermion compounds, these novel phenomena have hitherto never been reported in the $P$-$T$ phase diagram.



rate research

Read More

We report on a cooperative phenomenon of ferromagnetism and unconventional superconductivity (SC) in UGe$_2$ through the measurements of $^{73}$Ge nuclear-quadrupole-resonance (NQR) under pressure ($P$). The NQR spectra evidenced phase separation into ferromagnetic and paramagnetic phases in the vicinity of $P_csim 1.5$ GPa, pointing to a first-order transition. The measurements of nuclear-spin-lattice-relaxation-rate $1/T_1$ revealed that SC emerges under the background of ferromagnetism, but not of the paramagnetic phase.
We report on the pressure-induced unconventional superconductivity in the heavy-fermion antiferromagnet CeIn3 by means of nuclear-quadrupole-resonance (NQR) studies conducted under a high pressure. The temperature and pressure dependences of the NQR spectra have revealed a first-order quantum-phase transition (QPT) from an AFM to PM at a critical pressure Pc=2.46 GPa. Despite the lack of an AFM quantum critical point in the P-T phase diagram, we highlight the fact that the unconventional SC occurs in both phases of the AFM and PM. The nuclear spin-lattice relaxation rate 1/T1 in the AFM phase have provided evidence for the uniformly coexisting AFM+SC phase. In the HF-PM phase where AFM fluctuations are not developed, 1/T1 decreases without the coherence peak just below Tc, followed by a power-law like T dependence that indicates an unconventional SC with a line-node gap. Remarkably, Tc has a peak around Pc in the HF-PM phase as well as in the AFM phase. In other words, an SC dome exists with a maximum value of Tc = 230 mK around Pc, indicating that the origin of the pressure-induced HF SC in CeIn3 is not relevant to AFM spin fluctuations but to the emergence of the first-order QPT in CeIn3. When the AFM critical temperature is suppressed at the termination point of the first-order QPT, Pc = 2.46 GPa, the diverging AFM spin-density fluctuations emerge at the critical point from the AFM to PM. The results with CeIn3 leading to a new type of quantum criticality deserve further theoretical investigations.
PuCoGa$_5$ has emerged as a prototypical heavy-fermion superconductor, with its transition temperature ($T_csimeq18.5$ K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutoniums 5$f$ valence electrons. Here, we present a detailed $^{69,71}$Ga nuclear quadrupole resonance (NQR) study of PuCoGa$_5$, concentrating on the systems normal state properties near to $T_c$ and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographically inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6 K - 300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn$_5$. These findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.
97 - T.Mito , S.Kawasaki , G.-q.Zheng 2001
We report $^{115}$In nuclear-quadrupole-resonance (NQR) measurements of the pressure($P$)-induced superconductor CeRhIn$_5$ in the antiferromagnetic (AF) and superconducting (SC) states. In the AF region, the internal field $H_{int}$ at the In site is substantially reduced from $H_{int}=1.75$ kOe at P=0 to 0.39 kOe at $P=1.23$ GPa, while the Neel temperature slightly changes with increasing $P$. This suggests that either the size in the ordered moment $M_{Q}(P)$ or the angle $theta (P)$ between the direction of $M_{Q}(P)$ and the tetragonal $c$ axis is extrapolated to zero at $P^*=1.6 pm 0.1$ GPa at which a bulk SC transition is no longer emergent. In the SC state at $P=2.1$ GPa, the nuclear spin-lattice relaxation rate $^{115}(1/T_1)$ has revealed a $T^3$ dependence without the coherence peak just below $T_c$, giving evidence for the unconventional superconductivity. The dimensionality of the magnetic flutuations in the normal state are also discussed.
We report 29Si nuclear magnetic resonance measurements of single crystals and aligned powders of URu2Si2 under pressure in the hidden order and paramagnetic phases. We find that the Knight shift decreases with applied pressure, consistent with previous measurements of the static magnetic susceptibility. Previous measurements of the spin lattice relaxation time revealed a partial suppression of the density of states below 30 K. This suppression persists under pressure, and the onset temperature is mildly enhanced.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا