Do you want to publish a course? Click here

Optimal Resource Allocation in Random Networks with Transportation Bandwidths

143   0   0.0 ( 0 )
 Added by Yeung Chi Ho
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply statistical physics to study the task of resource allocation in random sparse networks with limited bandwidths for the transportation of resources along the links. Useful algorithms are obtained from recursive relations. Bottlenecks emerge when the bandwidths are small, causing an increase in the fraction of idle links. For a given total bandwidth per node, the efficiency of allocation increases with the network connectivity. In the high connectivity limit, we find a phase transition at a critical bandwidth, above which clusters of balanced nodes appear, characterised by a profile of homogenized resource allocation similar to the Maxwells construction.



rate research

Read More

We study the percolation in coupled networks with both inner-dependency and inter-dependency links, where the inner- and inter-dependency links represent the dependencies between nodes in the same or different networks, respectively. We find that when most of dependency links are inner- or inter-ones, the coupled networks system is fragile and makes a discontinuous percolation transition. However, when the numbers of two types of dependency links are close to each other, the system is robust and makes a continuous percolation transition. This indicates that the high density of dependency links could not always lead to a discontinuous percolation transition as the previous studies. More interestingly, although the robustness of the system can be optimized by adjusting the ratio of the two types of dependency links, there exists a critical average degree of the networks for coupled random networks, below which the crossover of the two types of percolation transitions disappears, and the system will always demonstrate a discontinuous percolation transition. We also develop an approach to analyze this model, which is agreement with the simulation results well.
Extreme events are emergent phenomena in multi-particle transport processes on complex networks. In practice, such events could range from power blackouts to call drops in cellular networks to traffic congestion on roads. All the earlier studies of extreme events on complex networks have focused only on the nodal events. If random walks are used to model transport process on a network, it is known that degree of the nodes determines the extreme event properties. In contrast, in this work, it is shown that extreme events on the edges display a distinct set of properties from that of the nodes. It is analytically shown that the probability for the occurrence of extreme events on an edge is independent of the degree of the nodes linked by the edge and is dependent only on the total number of edges on the network and the number of walkers on it. Further, it is also demonstrated that non-trivial correlations can exist between the extreme events on the nodes and the edges. These results are in agreement with the numerical simulations on synthetic and real-life networks.
We elaborate on a linear time implementation of the Collective Influence (CI) algorithm introduced by Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in a network via optimal percolation. We show that the computational complexity of CI is O(N log N) when removing nodes one-by-one, with N the number of nodes. This is made possible by using an appropriate data structure to process the CI values, and by the finite radius l of the CI sphere. Furthermore, we introduce a simple extension of CI when l is infinite, the CI propagation (CI_P) algorithm, that considers the global optimization of influence via message passing in the whole network and identifies a slightly smaller fraction of influencers than CI. Remarkably, CI_P is able to reproduce the exact analytical optimal percolation threshold obtained by Bau, Wormald, Random Struct. Alg. 21, 397 (2002) for cubic random regular graphs, leaving little improvement left for random graphs. We also introduce the Collective Immunization Belief Propagation algorithm (CI_BP), a belief-propagation (BP) variant of CI based on optimal immunization, which has the same performance as CI_P. However, this small augmented performance of the order of 1-2 % in the low influencers tail comes at the expense of increasing the computational complexity from O(N log N) to O(N^2 log N), rendering both, CI_P and CI_BP, prohibitive for finding influencers in modern-day big-data. The same nonlinear running time drawback pertains to a recently introduced BP-decimation (BPD) algorithm by Mugisha, Zhou, arXiv:1603.05781. For instance, we show that for big-data social networks of typically 200 million users (eg, active Twitter users sending 500 million tweets per day), CI finds the influencers in less than 3 hours running on a single CPU, while the BP algorithms (CI_P, CI_BP and BDP) would take more than 3,000 years to accomplish the same task.
We study a spatial network model with exponentially distributed link-lengths on an underlying grid of points, undergoing a structural crossover from a random, ErdH{o}s--Renyi graph to a $2D$ lattice at the characteristic interaction range $zeta$. We find that, whilst far from the percolation threshold the random part of the incipient cluster scales linearly with $zeta$, close to criticality it extends in space until the universal length scale $zeta^{3/2}$ before crossing over to the spatial one. We demonstrate this {em critical stretching} phenomenon in percolation and in dynamical processes, and we discuss its implications to real-world phenomena, such as neural activation, traffic flows or epidemic spreading.
158 - Kyu-Min Lee , K.-I. Goh , 2011
We introduce the sandpile model on multiplex networks with more than one type of edge and investigate its scaling and dynamical behaviors. We find that the introduction of multiplexity does not alter the scaling behavior of avalanche dynamics; the system is critical with an asymptotic power-law avalanche size distribution with an exponent $tau = 3/2$ on duplex random networks. The detailed cascade dynamics, however, is affected by the multiplex coupling. For example, higher-degree nodes such as hubs in scale-free networks fail more often in the multiplex dynamics than in the simplex network counterpart in which different types of edges are simply aggregated. Our results suggest that multiplex modeling would be necessary in order to gain a better understanding of cascading failure phenomena of real-world multiplex complex systems, such as the global economic crisis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا