Do you want to publish a course? Click here

Critical stretching of mean-field regimes in spatial networks

83   0   0.0 ( 0 )
 Added by Michael M Danziger
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a spatial network model with exponentially distributed link-lengths on an underlying grid of points, undergoing a structural crossover from a random, ErdH{o}s--Renyi graph to a $2D$ lattice at the characteristic interaction range $zeta$. We find that, whilst far from the percolation threshold the random part of the incipient cluster scales linearly with $zeta$, close to criticality it extends in space until the universal length scale $zeta^{3/2}$ before crossing over to the spatial one. We demonstrate this {em critical stretching} phenomenon in percolation and in dynamical processes, and we discuss its implications to real-world phenomena, such as neural activation, traffic flows or epidemic spreading.



rate research

Read More

Existing information-theoretic frameworks based on maximum entropy network ensembles are not able to explain the emergence of heterogeneity in complex networks. Here, we fill this gap of knowledge by developing a classical framework for networks based on finding an optimal trade-off between the information content of a compressed representation of the ensemble and the information content of the actual network ensemble. In this way not only we introduce a novel classical network ensemble satisfying a set of soft constraints but we are also able to calculate the optimal distribution of the constraints. We show that for the classical network ensemble in which the only constraints are the expected degrees a power-law degree distribution is optimal. Also, we study spatially embedded networks finding that the interactions between nodes naturally lead to non-uniform spread of nodes in the space, with pairs of nodes at a given distance not necessarily obeying a power-law distribution. The pertinent features of real-world air transportation networks are well described by the proposed framework.
Extreme events are emergent phenomena in multi-particle transport processes on complex networks. In practice, such events could range from power blackouts to call drops in cellular networks to traffic congestion on roads. All the earlier studies of extreme events on complex networks have focused only on the nodal events. If random walks are used to model transport process on a network, it is known that degree of the nodes determines the extreme event properties. In contrast, in this work, it is shown that extreme events on the edges display a distinct set of properties from that of the nodes. It is analytically shown that the probability for the occurrence of extreme events on an edge is independent of the degree of the nodes linked by the edge and is dependent only on the total number of edges on the network and the number of walkers on it. Further, it is also demonstrated that non-trivial correlations can exist between the extreme events on the nodes and the edges. These results are in agreement with the numerical simulations on synthetic and real-life networks.
A Random Geometric Graph (RGG) ensemble is defined by the disordered distribution of its node locations. We investigate how this randomness drives sample-to-sample fluctuations in the dynamical properties of these graphs. We study the distributional properties of the algebraic connectivity which is informative of diffusion and synchronization timescales in graphs. We use numerical simulations to provide the first characterisation of the algebraic connectivity distribution for RGG ensembles. We find that the algebraic connectivity can show fluctuations relative to its mean on the order of $30 %$, even for relatively large RGG ensembles ($N=10^5$). We explore the factors driving these fluctuations for RGG ensembles with different choices of dimensionality, boundary conditions and node distributions. Within a given ensemble, the algebraic connectivity can covary with the minimum degree and can also be affected by the presence of density inhomogeneities in the nodal distribution. We also derive a closed-form expression for the expected algebraic connectivity for RGGs with periodic boundary conditions for general dimension.
We apply statistical physics to study the task of resource allocation in random sparse networks with limited bandwidths for the transportation of resources along the links. Useful algorithms are obtained from recursive relations. Bottlenecks emerge when the bandwidths are small, causing an increase in the fraction of idle links. For a given total bandwidth per node, the efficiency of allocation increases with the network connectivity. In the high connectivity limit, we find a phase transition at a critical bandwidth, above which clusters of balanced nodes appear, characterised by a profile of homogenized resource allocation similar to the Maxwells construction.
320 - Ming Li , Run-Ran Liu , Dan Peng 2016
Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا