Do you want to publish a course? Click here

Nanoscale freezing of the 2D spin liquid Pr$_{3}$Ga$_{5}$SiO$_{14}$

129   0   0.0 ( 0 )
 Added by Chris Wiebe
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this letter, we report on the single crystal growth and physical characterization of the distorted kagom{e} system Pr$_3$Ga$_5$SiO$_{14}$. It is found that at zero magnetic field the system shows no magnetic order down to 0.035 K and exhibits a $T^{2}$ behavior for the specific heat at low temperatures, indicative of a gapless 2D spin liquid state. Application of an applied field induces nanoscale islands of ordered spins, with a concomitant reduction of the $T^{2}$ specific heat term. This state could be a possible ferro-spin nematic ordering stabilized out of an unusual spin liquid state.



rate research

Read More

We report on the use of $^{69,71}$Ga nuclear magnetic resonance to probe spin dynamics in the rare-earth kagom{e} system Pr$_3$Ga$_5$SiO$_{14}$. We find that the spin-lattice relaxation rate $^{69}1/T_1$ exhibits a maximum around 30 K, below which the Pr$^{3+}$ spin correlation time $tau$ shows novel field-dependent behavior consistent with a field-dependent gap in the excitation spectrum. The spin-spin relaxation rate $^{69}1/T_{2}$ exhibits a peak at a lower temperature (10 K) below which field-dependent power-law behavior close to $T^{2}$ is observed. These results point to field-induced formation of nanoscale magnetic clusters consistent with recent neutron scattering measurements.
The ground-state ordering and dynamics of the two-dimensional (2D) S=1/2 frustrated Heisenberg antiferromagnet Cs_2CuCl_4 is explored using neutron scattering in high magnetic fields. We find that the dynamic correlations show a highly dispersive continuum of excited states, characteristic of the RVB state, arising from pairs of S=1/2 spinons. Quantum renormalization factors for the excitation energies (1.65) and incommensuration (0.56) are large.
129 - M. Jeong , F. Bert , P. Mendels 2011
We report 17O NMR measurements in the S=1/2 Cu2+ kagome antiferromagnet Herbertsmithite ZnCu3(OH)6Cl2 down to 45mK in magnetic fields ranging from 2T to 12T. While Herbertsmithite displays a gapless spin-liquid behavior in zero field, we uncover an instability toward a spin-solid phase at sub-kelvin temperature induced by an applied magnetic field. The latter phase shows largely suppressed moments $lesssim 0.1muB$ and gapped excitations. The H-T phase diagram suggests the existence of a quantum critical point at the small but finite magnetic field mu0 Hc=1.55(25)T. We discuss this finding in light of the perturbative Dzyaloshinskii-Moriya interaction which was theoretically proposed to sustain a quantum critical regime for the quantum kagome Heisenberg antiferromagnet model.
It is well established that at low energies one-dimensional (1D) fermionic systems are described by the Luttinger liquid (LL) theory, that predicts phenomena like spin-charge separation, and charge fractionalization into chiral modes. Here we show through the time evolution of an electron injected into a 1D t-J model, obtained with time-dependent density matrix renormalization group, that a further fractionalization of both charge and spin takes place beyond the hydrodynamic limit. Its dynamics can be understood at the supersymmetric point (J=2t) in terms of the excitations of the Bethe-Ansatz solution. Furthermore we show that fractionalization with similar characteristics extends to the whole region corresponding to a repulsive LL.
We apply the conformal bootstrap technique to study the $U(1)$ Dirac spin liquid (i.e. $N_f=4$ QED$_3$) and the newly proposed $N=7$ Stiefel liquid (i.e. a conjectured 3d non-Lagrangian CFT without supersymmetry). For the $N_f=4$ QED$_3$, we focus on the monopole operator and ($SU(4)$ adjoint) fermion bilinear operator. We bootstrap their single correlators as well as the mixed correlators between them. We first discuss the bootstrap kinks from single correlators. Some exponents of these bootstrap kinks are close to the expected values of QED$_3$, but we provide clear evidence that they should not be identified as the QED$_3$. We then provide rigorous numerical bounds for the Dirac spin liquid and the $N=7$ Stiefel liquid to be stable critical phases on the triangular and kagome lattice. For the triangular and kagome Dirac spin liquid, the rigorous lower bounds of the monopole operators scaling dimension are $1.046$ and $1.105$, respectively. These bounds are consistent with the latest Monte Carlo results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا