No Arabic abstract
We apply the conformal bootstrap technique to study the $U(1)$ Dirac spin liquid (i.e. $N_f=4$ QED$_3$) and the newly proposed $N=7$ Stiefel liquid (i.e. a conjectured 3d non-Lagrangian CFT without supersymmetry). For the $N_f=4$ QED$_3$, we focus on the monopole operator and ($SU(4)$ adjoint) fermion bilinear operator. We bootstrap their single correlators as well as the mixed correlators between them. We first discuss the bootstrap kinks from single correlators. Some exponents of these bootstrap kinks are close to the expected values of QED$_3$, but we provide clear evidence that they should not be identified as the QED$_3$. We then provide rigorous numerical bounds for the Dirac spin liquid and the $N=7$ Stiefel liquid to be stable critical phases on the triangular and kagome lattice. For the triangular and kagome Dirac spin liquid, the rigorous lower bounds of the monopole operators scaling dimension are $1.046$ and $1.105$, respectively. These bounds are consistent with the latest Monte Carlo results.
We study the spin liquid candidate of the spin-$1/2$ $J_1$-$J_2$ Heisenberg antiferromagnet on the triangular lattice by means of density matrix renormalization group (DMRG) simulations. By applying an external Aharonov-Bohm flux insertion in an infinitely long cylinder, we find unambiguous evidence for gapless $U(1)$ Dirac spin liquid behavior. The flux insertion overcomes the finite size restriction for energy gaps and clearly shows gapless behavior at the expected wave-vectors. Using the DMRG transfer matrix, the low-lying excitation spectrum can be extracted, which shows characteristic Dirac cone structures of both spinon-bilinear and monopole excitations. Finally, we confirm that the entanglement entropy follows the predicted universal response under the flux insertion.
We study the quantum phase transition from a Dirac spin liquid to an antiferromagnet driven by condensing monopoles with spin quantum numbers. We describe the transition in field theory by tuning a fermion interaction to condense a spin-Hall mass, which in turn allows the appropriate monopole operators to proliferate and confine the fermions. We compute various critical exponents at the quantum critical point (QCP), including the scaling dimensions of monopole operators by using the state-operator correspondence of conformal field theory. We find that the degeneracy of monopoles in QED3 is lifted and yields a non-trivial monopole hierarchy at the QCP. In particular, the lowest monopole dimension is found to be smaller than that of QED3 using a large $N_f$ expansion where $2N_f$ is the number of fermion flavors. For the minimal magnetic charge, this dimension is $0.39N_f$ at leading order. We also study the QCP between Dirac and chiral spin liquids, which allows us to test a conjectured duality to a bosonic CP$^1$ theory. Finally, we discuss the implications of our results for quantum magnets on the Kagome lattice.
It is well established that at low energies one-dimensional (1D) fermionic systems are described by the Luttinger liquid (LL) theory, that predicts phenomena like spin-charge separation, and charge fractionalization into chiral modes. Here we show through the time evolution of an electron injected into a 1D t-J model, obtained with time-dependent density matrix renormalization group, that a further fractionalization of both charge and spin takes place beyond the hydrodynamic limit. Its dynamics can be understood at the supersymmetric point (J=2t) in terms of the excitations of the Bethe-Ansatz solution. Furthermore we show that fractionalization with similar characteristics extends to the whole region corresponding to a repulsive LL.
Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the previously known plaquette-singlet and antiferromagnetic states. Our conclusions are based on finite-size scaling of excited level crossings and order parameters. Together with previous results on candidate models for deconfined quantum criticality and spin liquid phases, our results point to a unified quantum phase diagram where the deconfined quantum-critical point separates a line of first-order transitions and a gapless spin liquid phase. The frustrated Shastry-Sutherland model is close to the critical point but slightly inside the spin liquid phase, while previously studied unfrustrated models cross the first-order line. We also argue that recent heat capacity measurements in SrCu$_2$(BO$_3$)$_2$ show evidence of the proposed spin liquid at pressures between 2.6 and 3 GPa.
Fascinating new phases of matter can emerge from strong electron interactions in solids. In recent years, a new exotic class of many-body phases, described by generalized electromagnetism of symmetric rank-2 electric and magnetic fields and immobile charge excitations dubbed fractons, has attracted wide attention. Beside interesting properties in their own right, they are also closely related to gapped fracton quantum orders, new phases of dipole-coversing systems, quantum information, and quantum gravity. However, experimental realization of the rank-2 U(1) gauge theory is still absent, and even known practical experimental routes are scarce. In this work we propose a scheme of coupled optical phonons and nematics as well as several of its concrete experimental constructions. They can realize the electrostatics sector of the rank-2 U(1) gauge theory. A great advantage of our scheme is that it requires only basic ingredients of phonon and nematic physics, hence can be applied to a wide range of nematic matters from liquid crystals to electron orbitals. We expect this work will provide crucial guidance for the realization of rank-2 U(1) and fracton states of matter on a variety of platforms.