Do you want to publish a course? Click here

Dynamical Behavior of Spins in the Rare-Earth Kagom{e} Pr$_3$Ga$_5$SiO$_{14}$

250   0   0.0 ( 0 )
 Added by Lloyd Lumata
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the use of $^{69,71}$Ga nuclear magnetic resonance to probe spin dynamics in the rare-earth kagom{e} system Pr$_3$Ga$_5$SiO$_{14}$. We find that the spin-lattice relaxation rate $^{69}1/T_1$ exhibits a maximum around 30 K, below which the Pr$^{3+}$ spin correlation time $tau$ shows novel field-dependent behavior consistent with a field-dependent gap in the excitation spectrum. The spin-spin relaxation rate $^{69}1/T_{2}$ exhibits a peak at a lower temperature (10 K) below which field-dependent power-law behavior close to $T^{2}$ is observed. These results point to field-induced formation of nanoscale magnetic clusters consistent with recent neutron scattering measurements.



rate research

Read More

In this letter, we report on the single crystal growth and physical characterization of the distorted kagom{e} system Pr$_3$Ga$_5$SiO$_{14}$. It is found that at zero magnetic field the system shows no magnetic order down to 0.035 K and exhibits a $T^{2}$ behavior for the specific heat at low temperatures, indicative of a gapless 2D spin liquid state. Application of an applied field induces nanoscale islands of ordered spins, with a concomitant reduction of the $T^{2}$ specific heat term. This state could be a possible ferro-spin nematic ordering stabilized out of an unusual spin liquid state.
122 - A. Sytcheva , U. Loew , S. Yasin 2010
The transverse acoustic wave propagating along the [100] axis of the cubic Tb$_3$Ga$_5$O$_{12}$ (acoustic $c_{44}$ mode) is doubly degenerate. A magnetic field applied in the direction of propagation lifts this degeneracy and leads to the rotation of the polarization vector - the magneto-acoustic Faraday rotation. Here, we report on the observation and analysis of the magneto-acoustic Faraday-effect in Tb$_3$Ga$_5$O$_{12}$ in static and pulsed magnetic fields. We present also a theoretical model based on magnetoelastic coupling of 4$f$ electrons to both, acoustic and optical phonons and an effective coupling between them. This model explains the observed linear frequency dependence of the Faraday rotation angle.
Valency of Ce and Pr in LRu4P12 (L = Ce and Pr) was studied by L2,3-edge x-ray absorption near-edge structure (XANES) spectroscopy. The Ce-L3 XANES spectrum suggests that Ce is mainly trivalent, but the 4f state strongly hybridizes with ligand orbitals. The band gap of CeRu4P12 seems to be formed by strong hybridization of 4f electrons. Pr-L2 XANES spectra indicate that Pr exists in trivalent state over a wide range in temperature, 20 < T < 300 K. We find that the metal-insulator (MI) transition at TMI = 60 K in PrRu4P12 does not originate from Pr valence fluctuation.
463 - Q. Y. Chen , C. H. P. Wen , Q. Yao 2018
Crystal electric field states in rare earth intermetallics show an intricate entanglement with the many-body physics that occurs in these systems and that is known to lead to a plethora of electronic phases. Here, we attempt to trace different contributions to the crystal electric field (CEF) splittings in CeIrIn$_5$, a heavy-fermion compound and member of the Ce$M$In$_5$ ($M$= Co, Rh, Ir) family. To this end, we utilize high-resolution resonant angle-resolved photoemission spectroscopy (ARPES) and present a spectroscopic study of the electronic structure of this unconventional superconductor over a wide temperature range. As a result, we show how ARPES can be used in combination with thermodynamic measurements or neutron scattering to disentangle different contributions to the CEF splitting in rare earth intermetallics. We also find that the hybridization is stronger in CeIrIn$_5$ than CeCoIn$_5$ and the effects of the hybridization on the Fermi volume increase is much smaller than predicted. By providing the first experimental evidence for $4f_{7/2}^{1}$ splittings which, in CeIrIn$_5$, split the octet into four doublets, we clearly demonstrate the many-body origin of the so-called $4f_{7/2}^{1}$ state.
We report neutron scattering, magnetic susceptibility and Monte Carlo theoretical analysis to verify the short range nature of the magnetic structure and spin-spin correlations in a Yb$_3$Ga$_5$O$_{12}$ single crystal. The quantum spin state of Yb$^{3+}$ in Yb$_3$Ga$_5$O$_{12}$ is verified. The quantum spins organise into a short ranged emergent director state for T $<$ 0.4 K derived from anisotropy and near neighbour exchange. We derive the magnitude of the near neighbour exchange interactions $0.6; {rm K} < J_1 < 0.7; {rm K}, J_2 = 0.12$~K and the magnitude of the dipolar exchange interaction, $D$, in the range $0.18 < D < 0.21$ K. Certain aspects of the broad experimental dataset can be modelled using a $J_1D$ model with ferromagnetic near neighbour spin-spin correlations while other aspects of the data can be accurately reproduced using a $J_1J_2D$ model with antiferromagnetic near neighbour spin-spin correlation. As such, although we do not quantify all the relevant exchange interactions we nevertheless provide a strong basis for the understanding of the complex Hamiltonian required to fully describe the magnetic state of Yb$_3$Ga$_5$O$_{12}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا