No Arabic abstract
We investigated the vortex dynamics in the non-centrosymmetric superconductor Li_2Pt_3B in the temperature range 0.1 K - 2.8 K. Two different logarithmic creep regimes in the decay of the remanent magnetization from the Bean critical state have been observed. In the first regime, the creep rate is extraordinarily small, indicating the existence of a new, very effective pinning mechanism. At a certain time a vortex avalanche occurs that increases the logarithmic creep rate by a factor of about 5 to 10 depending on the temperature. This may indicate that certain barriers against flux motion are present and they can be opened under increased pressure exerted by the vortices. A possible mechanism based on the barrier effect of twin boundaries is briefly discussed.
We report synthesis of non-centrosymmetric BiPd single crystal by self flux method. The BiPd single crystal is crystallized in monoclinic structure with the P21 space group. Detailed SEM (Scanning Electron Microscopy) results show that the crystals are formed in slab like morphology with homogenous distribution of Bi and Pd. The magnetic susceptibility measurement confirmed that the BiPd compound is superconducting below 4K. Further, BiPd exhibits weak ferromagnetism near the superconducting transition temperature in isothermal magnetization (MH) measurements. The temperature dependent electrical resistivity also confirmed that the BiPd single crystal is superconducting at Tc=4K. Magneto transport measurements showed that the estimated Hc2(0) value is around 7.0kOe. We also obtained a sharp peak in heat capacity Cp(T) measurements at below 4K due to superconducting ordering. The normalized specific-heat jump, DC/{gamma}Tc, is 1.52, suggesting the BiPd to be an intermediate BCS coupled superconductor. The pressure dependent electrical resistivity shows the Tc decreases with increasing applied pressure and the obtained dTc/dP is -0.62K/Gpa.
We determine the upper critical field $mu_0 H_{c2}(T_c)$ of non-centrosymmetric superconductor $Y_2 C_3$ using two distinct methods: the bulk magnetization M(T) and the tunnel-diode oscillator (TDO) based impedance measurements. It is found that the upper critical field reaches a value of 30T at zero temperature which is above the weak-coupling Pauli paramagnetic limit. We argue that the observation of such a large $mu_0 H_{c2}(0)$ in $Y_2 C_3$ could be attributed to the admixture of spin-singlet and spin-triplet pairing states as a result of broken inversion symmetry.
Quantum materials having Dirac fermions in conjunction with superconductivity is believed to be the candidate materials to realize exotic physics as well as advanced technology. Angle resolved photoemission spectroscopy (ARPES), a direct probe of the electronic structure, has been extensively used to study these materials. However, experiments often exhibit conflicting results on dimensionality and momentum of the Dirac Fermions (e.g. Dirac states in BiPd, a novel non-centrosymmetric superconductor), which is crucial for the determination of the symmetry, time-reversal invariant momenta and other emerging properties. Employing high-resolution ARPES at varied conditions, we demonstrated a methodology to identify the location of the Dirac node accurately and discover that the deviation from two-dimensionality of the Dirac states in BiPd proposed earlier is not a material property. These results helped to reveal the topology of the anisotropy of the Dirac states accurately. We have constructed a model Hamiltonian considering higher-order spin-orbit terms and demonstrate that this model provides an excellent description of the observed anisotropy. Intriguing features of the Dirac states in a non-centrosymmetric superconductor revealed in this study expected to have significant implication in the properties of topological superconductors.
We have investigated the superconducting state of the non-centrosymmetric compound Re6Zr using magnetization, heat capacity, and muon-spin relaxation/rotation (muSR) measurements. Re6Zr has a superconducting transition temperature, Tc = 6.75 K. Transverse-field muSR experiments, used to probe the superfluid density, suggest an s-wave character for the superconducting gap. However, zero and longitudinal-field muSR data reveal the presence of spontaneous static magnetic fields below Tc indicating that time-reversal symmetry is broken in the superconducting state and an unconventional pairing mechanism. An analysis of the pairing symmetries identifies the ground states compatible with time-reversal symmetry breaking.
The alloys of non-centrosymmetric superconductor, Re$_3$W, which were reported to have an $alpha$-Mn structure [P. Greenfield and P. A. Beck, J. Metals, N. Y. textbf{8}, 265 (1959)] with $T_mathrm{c}=9 $K were prepared by arc melting. The ac susceptibility and low-temperature specific heat were measured on these alloys. It is found that there are two superconducting phases coexisting in the samples with $T_mathrm{c1}sim9 $K and $T_mathrm{c2}sim7 $K, both of which have a non-centrosymmetric structure as reported previously. By analyzing the specific heat data measured in various magnetic fields, we found that the absence of the inversion symmetry does not lead to the deviation from a s-wave pairing symmetry in Re$_3$W.