Do you want to publish a course? Click here

Abelian ideals with given dimension in Borel subalgebras

119   0   0.0 ( 0 )
 Added by Li Luo
 Publication date 2008
  fields
and research's language is English
 Authors Li Luo




Ask ChatGPT about the research

A well-known Petersons theorem says that the number of abelian ideals in a Borel subalgebra of a rank-$r$ finite dimensional simple Lie algebra is exactly $2^r$. In this paper, we determine the dimensional distribution of abelian ideals in a Borel subalgebra of finite dimensional simple Lie algebras, which is a refinement of the Petersons theorem capturing more Lie algebra invariants.



rate research

Read More

The aim of this paper is to study the representation theory of quantum Schubert cells. Let $g$ be a simple complex Lie algebra. To each element $w$ of the Weyl group $W$ of $g$, De Concini, Kac and Procesi have attached a subalgebra $U_q[w]$ of the quantised enveloping algebra $U_q(g)$. Recently, Yakimov showed that these algebras can be interpreted as the quantum Schubert cells on quantum flag manifolds. In this paper, we study the primitive ideals of $U_q[w]$. More precisely, it follows from the Stratification Theorem of Goodearl and Letzter that the primitive spectrum of $U_q[w]$ admits a stratification indexed by those primes that are invariant under a natural torus action. Moreover each stratum is homeomorphic to the spectrum of maximal ideals of a torus. The main result of this paper gives an explicit formula for the dimension of the stratum associated to a given torus-invariant prime.
Together with Koenig and Ovsienko, the first author showed that every quasi-hereditary algebra can be obtained as the (left or right) dual of a directed bocs. In this monograph, we prove that if one additionally assumes that the bocs is basic, a notion we define, then this bocs is unique up to isomorphism. This should be seen as a generalisation of the statement that the basic algebra of an arbitrary associative algebra is unique up to isomorphism. The proof associates to a given presentation of the bocs an $A_infty$-structure on the $operatorname{Ext}$-algebra of the standard modules of the corresponding quasi-hereditary algebra. Uniqueness then follows from an application of Kadeishvilis theorem.
We develop a direct method to recover an orthoalgebra from its poset of Boolean subalgebras. For this a new notion of direction is introduced. Directions are also used to characterize in purely order-theoretic terms those posets that are isomorphic to the poset of Boolean subalgebras of an orthoalgebra. These posets are characterized by simple conditions defining orthodomains and the additional requirement of having enough directions. Excepting pathologies involving maximal Boolean subalgebras of four elements, it is shown that there is an equivalence between the category of orthoalgebras and the category of orthodomains with enough directions with morphisms suitably defined. Furthermore, we develop a representation of orthodomains with enough directions, and hence of orthoalgebras, as certain hypergraphs. This hypergraph approach extends the technique of Greechie diagrams and resembles projective geometry. Using such hypergraphs, every orthomodular poset can be represented by a set of points and lines where each line contains exactly three points.
149 - V.K. Kharchenko 2007
Let $H$ be a character Hopf algebra. Every right coideal subalgebra that contains the coradical has a PBW-basis which can be extended up to a PBW-basis of $H.$
Fix a poset $Q$ on ${x_1,ldots,x_n}$. A $Q$-Borel monomial ideal $I subseteq mathbb{K}[x_1,ldots,x_n]$ is a monomial ideal whose monomials are closed under the Borel-like moves induced by $Q$. A monomial ideal $I$ is a principal $Q$-Borel ideal, denoted $I=Q(m)$, if there is a monomial $m$ such that all the minimal generators of $I$ can be obtained via $Q$-Borel moves from $m$. In this paper we study powers of principal $Q$-Borel ideals. Among our results, we show that all powers of $Q(m)$ agree with their symbolic powers, and that the ideal $Q(m)$ satisfies the persistence property for associated primes. We also compute the analytic spread of $Q(m)$ in terms of the poset $Q$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا