Do you want to publish a course? Click here

Perturbative calculations for the HISQ action: the gluon action at $O(N_falpha_sa^2)$

93   0   0.0 ( 0 )
 Added by Georg von Hippel
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We present a new (and general) algorithm for deriving lattice Feynman rules which is capable of handling actions as complex as the Highly Improved Staggered Quark (HISQ) action. This enables us to perform a perturbative calculation of the influence of dynamical HISQ fermions on the perturbative improvement of the gluonic action in the same way as we have previously done for asqtad fermions. We find the fermionic contributions to the radiative corrections in the Luscher-Weisz gauge action to be somewhat larger for HISQ fermions than for asqtad.



rate research

Read More

We study the lattice spacing dependence, or scaling, of physical quantities using the highly improved staggered quark (HISQ) action introduced by the HPQCD/UKQCD collaboration, comparing our results to similar simulations with the asqtad fermion action. Results are based on calculations with lattice spacings approximately 0.15, 0.12 and 0.09 fm, using four flavors of dynamical HISQ quarks. The strange and charm quark masses are near their physical values, and the light-quark mass is set to 0.2 times the strange-quark mass. We look at the lattice spacing dependence of hadron masses, pseudoscalar meson decay constants, and the topological susceptibility. In addition to the commonly used determination of the lattice spacing through the static quark potential, we examine a determination proposed by the HPQCD collaboration that uses the decay constant of a fictitious unmixed s bar s pseudoscalar meson. We find that the lattice artifacts in the HISQ simulations are much smaller than those in the asqtad simulations at the same lattice spacings and quark masses.
We describe recent progress on generation of gauge configurations using the Highly Improved Staggered Quark (HISQ) action that was designed by the HPQCD/UKQCD collaboration. The HISQ action requires two levels of smearing with a reunitarization of the links before the second smearing. We describe how we deal with the occurrence of occasional large forces arising from the reunitarization step. The MILC collaboration is currently generating ensembles with approximate lattice spacings of 0.15, 0.12, 0.09, and 0.06 fm, with the strange and charm quark masses close to their physical values and the mass of the light quarks m_l set to 0.2 m_s. We present recent results for pion taste splittings, light hadron masses, the static potential, the eta_c dispersion relation and the topological susceptibility.
65 - Andrew T. Lytle 2015
I report on a calculation of bilinear Z-factors needed for determining Z_m using non-perturbative renormalization (NPR) on n_f=2+1+1 HISQ ensembles. RI/MOM and RI/SMOM schemes are studied. These will provide an independent determination of quark masses in addition to other methods being used by the HPQCD collaboration.
We perform a non-perturbative determination of the O(a)-improvement coefficient c_SW for the Wilson quark action in three-flavor QCD with the plaquette gauge action. Numerical simulations are carried out in a range of beta=12.0-5.2 on a single lattice size of 8^3x16 employing the Schrodinger functional setup of lattice QCD. As our main result, we obtain an interpolation formula for c_SW and the critical hopping parameter K_c as a function of the bare coupling. This enables us to remove O(a) scaling violation from physical observables in future numerical simulation in the wide range of beta. Our analysis with a perturbatively modified improvement condition for c_SW suggests that finite volume effects in c_SW are not large on the 8^3x16 lattice. We investigate N_f dependence of c_SW by additional simulations for N_f=4, 2 and 0 at beta=9.6. As a preparatory step for this study, we also determine c_SW in two-flavor QCD at beta=5.2. At this beta, several groups carried out large-scale calculations of the hadron spectrum, while no systematic determination of c_SW has been performed.
We perform a perturbative calculation of the influence of dynamical HISQ fermions on the perturbative improvement of the gluonic action in the same way as we have previously done for asqtad fermions. We find the fermionic contributions to the radiative corrections in the Luescher-Weisz gauge action to be somewhat larger for HISQ fermions than for asqtad. Using one-loop perturbation theory as a test, we estimate that omission of the fermion-induced radiative corrections in dynamical asqtad simulations will give a measurable effect. The one-loop result gives a systematic shift of about -0.6% in (r_1/a) on the coarsest asqtad improved staggered ensembles. This is the correct sign and magnitude to explain the scaling violations seen in Phi_B on dynamical lattice ensembles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا