Do you want to publish a course? Click here

Non-perturbative O(a)-improvement of Wilson quark action in three-flavor QCD with plaquette gauge action

164   0   0.0 ( 0 )
 Added by Takashi Kaneko
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

We perform a non-perturbative determination of the O(a)-improvement coefficient c_SW for the Wilson quark action in three-flavor QCD with the plaquette gauge action. Numerical simulations are carried out in a range of beta=12.0-5.2 on a single lattice size of 8^3x16 employing the Schrodinger functional setup of lattice QCD. As our main result, we obtain an interpolation formula for c_SW and the critical hopping parameter K_c as a function of the bare coupling. This enables us to remove O(a) scaling violation from physical observables in future numerical simulation in the wide range of beta. Our analysis with a perturbatively modified improvement condition for c_SW suggests that finite volume effects in c_SW are not large on the 8^3x16 lattice. We investigate N_f dependence of c_SW by additional simulations for N_f=4, 2 and 0 at beta=9.6. As a preparatory step for this study, we also determine c_SW in two-flavor QCD at beta=5.2. At this beta, several groups carried out large-scale calculations of the hadron spectrum, while no systematic determination of c_SW has been performed.



rate research

Read More

We report on a calculation of the light hadron spectrum and quark masses in three-flavor dynamical QCD using the non-perturbatively O(a)-improved Wilson quark action and a renormalization-group improved gauge action. Simulations are carried out on a 16^3 times 32 lattice at beta=1.9, where a^{-1} simeq 2GeV, with 6 ud quark masses corresponding to m_{pi}/m_{rho} simeq 0.64-0.77 and 2 s quark masses close to the physical value. We observe that the inclusion of dynamical strange quark brings the lattice QCD meson spectrum to good agreement with experiment. Dynamical strange quarks also lead to a reduction of the uds quark masses by about 15%.
We explore sea quark effects in the light hadron mass spectrum in a simulation of two-flavor QCD using the nonperturbatively O(a)-improved Wilson fermion action. In order to identify finite-size effects, light meson masses are measured on 12^3x48, 16^3x48 and 20^3x48 lattices with a~0.1 fm. On the largest lattice, where the finite-size effect is negligible, we find a significant increase of the strange vector meson mass compared to the quenched approximation. We also investigate the quark mass dependence of pseudoscalar meson masses and decay constants and test the consistency with (partially quenched) chiral perturbation theory.
We perform a nonperturbative determination of the $O(a)$-improvement coefficient $c_{rm SW}$ and the critical hopping parameter $kappa_c$ for $N_f$=3, 2, 0 flavor QCD with the RG-improved gauge action using the Schrodinger functional method. In order to interpolate $c_{rm SW}$ and $kappa_c$ as a function of the bare coupling, a wide range of $beta$ from the weak coupling region to the moderately strong coupling points used in large-scale simulations is studied. Corrections at finite lattice size of $O(a/L)$ turned out to be large for the RG-improved gauge action, and hence we make the determination at a size fixed in physical units using a modified improvement condition. This enables us to avoid $O(a)$ scaling violations which would remain in physical observables if $c_{rm SW}$ determined for a fixed lattice size $L/a$ is used in numerical simulations.
143 - John Bulava 2015
The coefficient c_A required for O(a) improvement of the axial current in lattice QCD with N_f=3 flavors of Wilson fermions and the tree-level Symanzik-improved gauge action is determined non-perturbatively. The standard improvement condition using Schroedinger functional boundary conditions is employed at constant physics for a range of couplings relevant for simulations at lattice spacings of ~ 0.09 fm and below. We define the improvement condition projected onto the zero topological charge sector of the theory, in order to avoid the problem of possibly insufficient tunneling between topological sectors in our simulations at the smallest bare coupling. An interpolation formula for c_A(g_0^2) is provided together with our final results.
We study the finite-temperature phase structure and the transition temperature of QCD with two flavors of dynamical quarks on a lattice with the temporal size $N_t=4$, using a renormalization group improved gauge action and the Wilson quark action improved by the clover term. The region of a parity-broken phase is identified, and the finite-temperature transition line is located on a two-dimensional parameter space of the coupling ($beta=6/g^2$) and hopping parameter $K$. Near the chiral transition point, defined as the crossing point of the critical line of the vanishing pion mass and the line of finite-temperature transition, the system exhibits behavior well described by the scaling exponents of the three-dimensional O(4) spin model. This indicates a second-order chiral transition in the continuum limit. The transition temperature in the chiral limit is estimated to be $T_c = 171(4)$ MeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا