Do you want to publish a course? Click here

Probing the Hofstadter butterfly with the quantum oscillation of magnetization

138   0   0.0 ( 0 )
 Added by Liping Yang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed a different quantum transfer matrix method to accurately determine thermodynamic properties of the Hofstadter model. This method resolves a technical problem which is intractable by other methods and makes the calculation of physical quantities of the Hofstadter model in the thermodynamic limit at finite temperatures feasible. It is shown that the quantum correction to the de Haas-van Alphen (dHvA) oscillation of magnetization bears the energy structure of Hofstadter butterfly. The measurement of this quantum correction, which can be materialized on the superlattice or cold atom systems, can reveal unambiguously the Hofstadter fractal energy spectrum.



rate research

Read More

93 - S. A. Owerre 2018
We introduce the magnonic Floquet Hofstadter butterfly in the two-dimensional insulating honeycomb ferromagnet. We show that when the insulating honeycomb ferromagnet is irradiated by an oscillating space- and time-dependent electric field, the hopping magnetic dipole moment (i.e. magnon quasiparticles) accumulate the Aharonov-Casher phase. In the case of only space-dependent electric field, we realize the magnonic Hofstadter spectrum with similar fractal structure as graphene subject to a perpendicular magnetic field, but with no spin degeneracy due to broken time-reversal symmetry by the ferromagnetic order. In addition, the magnonic Dirac points and Landau levels occur at finite energy as expected in a bosonic system. Remarkably, this discrepancy does not affect the topological invariant of the system. Consequently, the magnonic Chern number assumes odd values and the magnon Hall conductance gets quantized by odd integers. In the case of both space- and time-dependent electric field, the theoretical framework is studied by the Floquet formalism. We show that the magnonic Floquet Hofstadter spectrum emerges entirely from the oscillating space- and time-dependent electric field, which is in stark contrast to electronic Floquet Hofstadter spectrum, where irradiation by circularly polarized light and a perpendicular magnetic field are applied independently. We study the deformation of the fractal structure at different laser frequencies and amplitudes, and analyze the topological phase transitions associated with gap openings in the magnonic Floquet Hofstadter butterfly.
The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales in the butterfly fractal and lay out a very detailed topological map of the butterfly. Our study reveals the existence of a set of critical points, each corresponding to a macroscopic annihilation of orderly patterns of both the positive and the negative Cherns that appears as a fine structure in the butterfly. Such topological collapses are identified with the Van Hove singularities that exists at every band center in the butterfly landscape. We thus associate a topological character to the Van Hove anomalies. Finally, we show that this fine structure is amplified under perturbation, inducing quantum phase transitions to higher Chern states in the system.
We study how the stability of the fractional quantum Hall effect (FQHE) is influenced by the geometry of band structure in lattice Chern insulators. We consider the Hofstadter model, which converges to continuum Landau levels in the limit of small flux per plaquette. This gives us a degree of analytic control not possible in generic lattice models, and we are able to obtain analytic expressions for the relevant geometric criteria. These may be differentiated by whether they converge exponentially or polynomially to the continuum limit. We demonstrate that the latter criteria have a dominant effect on the physics of interacting particles in Hofstadter bands in this low flux density regime. In particular, we show that the many-body gap depends monotonically on a band-geometric criterion related to the trace of the Fubini-Study metric.
85 - Igor N.Karnaukhov 2021
Applying a unified approach, we study integer quantum Hall effect (IQHE) and fractional quantum Hall effect (FQHE) in the Hofstadter model with short range interaction between fermions. An effective field, that takes into account the interaction, is determined by both the amplitude and phase. Its amplitude is proportional to the interaction strength, the phase corresponds to the minimum energy. In fact the problem is reduced to the Harper equation with two different scales: the first is a magnetic scale (cell size corresponding to a unit quantum magnetic flux), the second scale (determines the inhomogeneity of the effective field) forms the steady fine structure of the Hofstadter spectrum and leads to the realization of fractional quantum Hall states. In a sample of finite sizes with open boundary conditions, the fine structure of the Hofstadter spectrum also includes the fine structure of the edge chiral modes. The subbands in a fine structure of the Hofstadter band (HB) are separated extremely small quasigaps. The Chern number of a topological HB is conserved during the formation of its fine structure. Edge modes are formed into HB, they connect the nearest-neighbor subbands and determine the fractional conductance for the fractional filling at the Fermi energies corresponding to these quasigaps.
We investigate theoretically the spectrum of a graphene-like sample (honeycomb lattice) subjected to a perpendicular magnetic field and irradiated by circularly polarized light. This system is studied using the Floquet formalism, and the resulting Hofstadter spectrum is analyzed for different regimes of the driving frequency. For lower frequencies, resonances of various copies of the spectrum lead to intricate formations of topological gaps. In the Landau-level regime, new wing-like gaps emerge upon reducing the driving frequency, thus revealing the possibility of dynamically tuning the formation of the Hofstadter butterfly. In this regime, an effective model may be analytically derived, which allows us to retrace the energy levels that exhibit avoided crossings and ultimately lead to gap structures with a wing-like shape. At high frequencies, we find that gaps open for various fluxes at $E=0$, and upon increasing the amplitude of the driving, gaps also close and reopen at other energies. The topological invariants of these gaps are calculated and the resulting spectrum is elucidated. We suggest opportunities for experimental realization and discuss similarities with Landau-level structures in non-driven systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا