Do you want to publish a course? Click here

The non-magnetic collapsed tetragonal phase of CaFe2As2 and superconductivity in the iron pnictides

170   0   0.0 ( 0 )
 Added by Andreas Kreyssig
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the non-superconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is non-magnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.



rate research

Read More

Inelastic neutron scattering measurements of CaFe2As2 under applied hydrostatic pressure show that the antiferromagnetic spin fluctuations observed in the ambient pressure, paramagnetic, tetragonal (T) phase are strongly suppressed, if not absent, in the collapsed tetragonal (cT) phase. These results are consistent with a quenched Fe moment in the cT phase and the strong decrease in resistivity observed upon crossing the boundary from the T to cT phase. The suppression or absence of static antiferromagnetic order and dynamic spin fluctuations in the non-superconducting cT phase supports the notion of a coupling between spin fluctuations and superconductivity in the iron arsenides.
272 - R. S. Dhaka , Rui Jiang , S. Ran 2014
We use angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic structure of CaFe$_2$As$_2$ in previously unexplored collapsed tetragonal (CT) phase. This unusual phase of the iron arsenic high temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the post growth, thermal treatment of the single crystals, we were able to stabilize the CT phase at ambient-pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks below the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase along with apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.
146 - A. Kreyssig , M. A. Green , Y. Lee 2008
Recent investigations of the superconducting iron-arsenide families have highlighted the role of pressure, be it chemical or mechanical, in fostering superconductivity. Here we report that CaFe2As2 undergoes a pressure-induced transition to a non-magnetic, volume collapsed tetragonal phase, which becomes superconducting at lower temperature. Spin-polarized total-energy calculations on the collapsed structure reveal that the magnetic Fe moment itself collapses, consistent with the absence of magnetic order in neutron diffraction.
Using non-resonant Fe K-beta x-ray emission spectroscopy, we reveal that Sr-doping of CaFe2As2 decouples the Fe moment from the volume collapse transition, yielding a collapsed-tetragonal, paramagnetic normal state out of which superconductivity develops. X-ray diffraction measurements implicate the c-axis lattice parameter as the controlling criterion for the Fe moment, promoting a generic description for the appearance of pressure-induced superconductivity in the alkaline-earth-based 122 ferropnictides (AFe2As2). The evolution of the superconducting critical temperature with pressure lends support to theories for superconductivity involving unconventional pairing mediated by magnetic fluctuations.
We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1 GPa, and electrical resistance measurements up to p = 5.9 GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7 K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a-axis is the same for the T and cT phases whereas, along the c-axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p <= 5.9 GPa and T >= 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p >= 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا