No Arabic abstract
We detail the use of simple machine learning algorithms to determine the critical Bose-Einstein condensation (BEC) critical temperature $T_text{c}$ from ensembles of paths created by path-integral Monte Carlo (PIMC) simulations. We quickly overview critical temperature analysis methods from literature, and then compare the results of simple machine learning algorithm analyses with these prior-published methods for one-component Coulomb Bose gases and liquid $^4$He, showing good agreement.
Cold atom developments suggest the prospect of measuring scaling properties and long-range fluctuations of continuous phase transitions at zero-temperature. We discuss the conditions for characterizing the phase separation of Bose-Einstein condensates of boson atoms in two distinct hyperfine spin states. The mean-field description breaks down as the system approaches the transition from the miscible side. An effective spin description clarifies the ferromagnetic nature of the transition. We show that a difference in the scattering lengths for the bosons in the same spin state leads to an effective internal magnetic field. The conditions at which the internal magnetic field vanishes (i.e., equal values of the like-boson scattering lengths) is a special point. We show that the long range density fluctuations are suppressed near that point while the effective spin exhibits the long-range fluctuations that characterize critical points. The zero-temperature system exhibits critical opalescence with respect to long wavelength waves of impurity atoms that interact with the bosons in a spin-dependent manner.
Fractional derivatives are nonlocal differential operators of real order that often appear in models of anomalous diffusion and a variety of nonlocal phenomena. Recently, a version of the Schrodinger Equation containing a fractional Laplacian has been proposed. In this work, we develop a Fractional Path Integral Monte Carlo algorithm that can be used to study the finite temperature behavior of the time-independent Fractional Schrodinger Equation for a variety of potentials. In so doing, we derive an analytic form for the finite temperature fractional free particle density matrix and demonstrate how it can be sampled to acquire new sets of particle positions. We employ this algorithm to simulate both the free particle and $^{4}$He (Aziz) Hamiltonians. We find that the fractional Laplacian strongly encourages particle delocalization, even in the presence of interactions, suggesting that fractional Hamiltonians may manifest atypical forms of condensation. Our work opens the door to studying fractional Hamiltonians with arbitrarily complex potentials that escape analytical solutions.
We present a microscopic theory of the second order phase transition in an interacting Bose gas that allows one to describe formation of an ordered condensate phase from a disordered phase across an entire critical region continuously. We derive the exact fundamental equations for a condensate wave function and the Green functions, which are valid both inside and outside the critical region. They are reduced to the usual Gross-Pitaevskii and Beliaev-Popov equations in a low-temperature limit outside the critical region. The theory is readily extendable to other phase transitions, in particular, in the physics of condensed matter and quantum fields.
Bose-Einstein condensation, the macroscopic occupation of a single quantum state, appears in equilibrium quantum statistical mechanics and persists also in the hydrodynamic regime close to equilibrium. Here we show that even when a degenerate Bose gas is driven into a steady state far from equilibrium, where the notion of a single-particle ground state becomes meaningless, Bose-Einstein condensation survives in a generalized form: the unambiguous selection of an odd number of states acquiring large occupations. Within mean-field theory we derive a criterion for when a single and when multiple states are Bose selected in a non-interacting gas. We study the effect in several driven-dissipative model systems, and propose a quantum switch for heat conductivity based on shifting between one and three selected states.
We present a practical analysis of the fermion sign problem in fermionic path integral Monte Carlo (PIMC) simulations in the grand-canonical ensemble (GCE). As a representative model system, we consider electrons in a $2D$ harmonic trap. We find that the sign problem in the GCE is even more severe than in the canonical ensemble at the same conditions, which, in general, makes the latter the preferred option. Despite these difficulties, we show that fermionic PIMC simulations in the GCE are still feasible in many cases, which potentially gives access to important quantities like the compressiblity or the Matsubara Greens function. This has important implications for contemporary fields of research such as warm dense matter, ultracold atoms, and electrons in quantum dots.