No Arabic abstract
We present the derivation of distribution functions for the first four members of a family of disks, previously obtained in (MNRAS, 371, 1873, 2006), which represent a family of axially symmetric galaxy models with finite radius and well behaved surface mass density. In order to do this we employ several approaches that have been developed starting from the potential-density pair and, essentially using the method introduced by Kalnajs (Ap. J., 205, 751, 1976) we obtain some distribution functions that depend on the Jacobi integral. Now, as this method demands that the mass density can be properly expressed as a function of the gravitational potential, we can do this only for the first four discs of the family. We also find another kind of distribution functions by starting with the even part of the previous distribution functions and using the maximum entropy principle in order to find the odd part and so a new distribution function, as it was pointed out by Dejonghe (Phys. Rep., 133, 217, 1986). The result is a wide variety of equilibrium states corresponding to several self-consistent finite flat galaxy models.
We consider the problem of estimating the mean vector $theta$ of a $d$-dimensional spherically symmetric distributed $X$ based on balanced loss functions of the forms: {bf (i)} $omega rho(|de-de_{0}|^{2}) +(1-omega)rho(|de - theta|^{2})$ and {bf (ii)} $ellleft(omega |de - de_{0}|^{2} +(1-omega)|de - theta|^{2}right)$, where $delta_0$ is a target estimator, and where $rho$ and $ell$ are increasing and concave functions. For $dgeq 4$ and the target estimator $delta_0(X)=X$, we provide Baranchik-type estimators that dominate $delta_0(X)=X$ and are minimax. The findings represent extensions of those of Marchand & Strawderman (cite{ms2020}) in two directions: {bf (a)} from scale mixture of normals to the spherical class of distributions with Lebesgue densities and {bf (b)} from completely monotone to concave $rho$ and $ell$.
We consider the properties of a static axially symmetric wormhole described by an exact solution of Einsteins field equations and investigate how we can distinguish such a hypothetical object from a black hole. To this aim, we explore the motion of test particles and photons in the wormholes space-time and compare it with the particle dynamics in the well known space-times of Schwarzschild and Kerr black holes. We show that precise simultaneous measurement of test particle motion and photon motion may provide the means to distinguish the wormhole geometry from that of a black hole.
Extensive early observations proved that the ejecta of supernova 1987A (SN 1987A) are aspherical. Fifteen years after the supernova explosion, the Hubble Space Telescope has resolved the rapidly expanding ejecta. The late-time images and spectroscopy provide a geometrical picture that is consistent with early observations and suggests a highly structured, axially symmetric geometry. We present here a new synthesis of the old and new data. We show that the Bochum event, presumably a clump of $^{56}$Ni, and the late-time image, the locus of excitation by $^{44}$Ti, are most naturally accounted for by sharing a common position angle of about 14degree, the same as the mystery spot and early speckle data on the ejecta, and that they are both oriented along the axis of the inner circumstellar ring at 45degree to the plane of the sky. We also demonstrate that the polarization represents a prolate geometry with the same position angle and axis as the early speckle data and the late-time image and hence that the geometry has been fixed in time and throughout the ejecta. The Bochum event and the Doppler kinematics of the [Ca II]/[O II] emission in spatially resolved HST spectra of the ejecta can be consistently integrated into this geometry. The radioactive clump is deduced to fall approximately along the axis of the inner circumstellar ring and therefore to be redshifted in the North whereas the [Ca II]/[O II] 7300 AA emission is redshifted in the South. We present a jet-induced model for the explosion and argue that such a model can account for many of the observed asymmetries. In the jet models, the oxygen and calcium are not expected to be distributed along the jet, but primarily in an expanding torus that shares the plane and northern blue shift of the inner circumstellar ring.
The Lounesto classification splits spinors in six classes: I, II, III are those for which at least one among scalar and pseudo-scalar bi-linear spinor quantities is non-zero, its spinors are called regular, and among them we find the usual Dirac spinor. IV, V, VI are those for which the scalar and pseudo-scalar bi-linear spinor quantities are identically zero, its spinors are called singular, and they are split in further sub-classes: IV has no further restrictions, its spinors are called flag-dipole; V is the one for which the spin axial-vector vanishes, its spinors are called flagpole, and among them we find the Majorana spinor; VI is the one for which the momentum antisymmetric-tensor vanishes, its spinors are called dipole, and among them we find the Weyl spinor. In the quest for exact solutions of fully-coupled systems of spinor fields in their own gravity, we have already given examples in the case of Dirac fields and Weyl fields but never in the case of Majorana or more generally flagpole spinor fields. Flagpole spinor fields in interaction with their own gravitational field, in the case of axial symmetry, will be considered. Exact solutions of the field equations will be given.
We introduce a systematic and direct procedure to generate hairy rotating black holes by deforming a spherically symmetric seed solution. We develop our analysis in the context of the gravitational decoupling approach, without resorting to the Newman-Janis algorithm. As examples of possible applications, we investigate how the Kerr black hole solution is modified by a surrounding fluid with conserved energy-momentum tensor. We find non-trivial extensions of the Kerr and Kerr-Newman black holes with primary hair. We prove that a rotating and charged black hole can have the same horizon as Kerrs, Schwarzschilds or Reissner-Nordstroms, thus showing possible observational effects of matter around black holes.