We consider the properties of a static axially symmetric wormhole described by an exact solution of Einsteins field equations and investigate how we can distinguish such a hypothetical object from a black hole. To this aim, we explore the motion of test particles and photons in the wormholes space-time and compare it with the particle dynamics in the well known space-times of Schwarzschild and Kerr black holes. We show that precise simultaneous measurement of test particle motion and photon motion may provide the means to distinguish the wormhole geometry from that of a black hole.
The motion of spinning test particles around a traversable wormhole is investigated using the Mathisson Papapetrous Dixon equations, which couple the Riemann tensor with the antisymmetric tensor $S^{ab}$, related to the spin of the particle. Hence, we study the effective potential, circular orbits, and innermost stable circular orbit ISCO of spinning particles. We found that the spin affects significantly the location of the ISCO, in contrast with the motion of nonspinning particles, where the ISCO is the same in both the upper and lower universes. On the other hand, since the dynamical fourmomentum and kinematical fourvelocity of the spinning particle are not always parallel, we also consider a superluminal bound on the particles motion. In the case of circular orbits at the ISCO, we found that the motion of particles with an adimensional spin parameter lower greater than $s=-1.5$ $(1.5)$ is forbidden. The spin interaction becomes important for Kerr black hole orbiting super massive wormholes SMWH.
The measurement of the epicyclic frequencies is a widely used astrophysical technique to infer information on a given self-gravitating system and on the related gravity background. We derive their explicit expressions in static and spherically symmetric wormhole spacetimes. We discuss how these theoretical results can be applied to: (1) detect the presence of a wormhole, distinguishing it by a black hole; (2) reconstruct wormhole solutions through the fit of the observational data, once we have them. Finally, we discuss the physical implications of our proposed epicyclic method.
In this paper we study geodesic motion around a distorted Schwarzschild black hole. We consider both timelike and null geodesics which are confined to the black holes equatorial plane. Such geodesics generically exist if the distortion field has only even interior multipole moments and so the field is symmetric with respect to the equatorial plane. We specialize to the case of distortions defined by a quadrupole Weyl moment. An analysis of the effective potential for equatorial timelike geodesics shows that finite stable orbits outside the black hole are possible only for $qin(q_{text{min}}, q_{text{max}}]$, where $q_{text{min}}approx-0.0210$ and $q_{text{max}}approx2.7086times10^{-4}$, while for null equatorial geodesics a finite stable orbit outside the black hole is possible only for $qin[q_{text{min}},0)$. Moreover, the innermost stable circular orbits (ISCOs) are closer to the distorted black hole horizon than those of an undistorted Schwarzschild black hole for $qin(q_{text{min}},0)$ and a null ISCO exists for $q=q_{text{min}}$. These results shows that an external distortion of a negative and sufficiently small quadrupole moment tends to stabilize motion of massive particles and light.
We consider test particle motion in a gravitational field generated by a homogeneous circular ring placed in $n$-dimensional Euclidean space. We observe that there exist no stable stationary orbits in $n=6, 7, ldots, 10$ but exist in $n=3, 4, 5$ and clarify the regions in which they appear. In $n=3$, we show that the separation of variables of the Hamilton-Jacobi equation does not occur though we find no signs of chaos for stable bound orbits. Since the system is integrable in $n=4$, no chaos appears. In $n=5$, we find some chaotic stable bound orbits. Therefore, this system is nonintegrable at least in $n=5$ and suggests that the timelike geodesic system in the corresponding black ring spacetimes is nonintegrable.
The Lounesto classification splits spinors in six classes: I, II, III are those for which at least one among scalar and pseudo-scalar bi-linear spinor quantities is non-zero, its spinors are called regular, and among them we find the usual Dirac spinor. IV, V, VI are those for which the scalar and pseudo-scalar bi-linear spinor quantities are identically zero, its spinors are called singular, and they are split in further sub-classes: IV has no further restrictions, its spinors are called flag-dipole; V is the one for which the spin axial-vector vanishes, its spinors are called flagpole, and among them we find the Majorana spinor; VI is the one for which the momentum antisymmetric-tensor vanishes, its spinors are called dipole, and among them we find the Weyl spinor. In the quest for exact solutions of fully-coupled systems of spinor fields in their own gravity, we have already given examples in the case of Dirac fields and Weyl fields but never in the case of Majorana or more generally flagpole spinor fields. Flagpole spinor fields in interaction with their own gravitational field, in the case of axial symmetry, will be considered. Exact solutions of the field equations will be given.