Do you want to publish a course? Click here

Goal-oriented Dialog as a Collaborative Subordinated Activity involving Collective Acceptance

461   0   0.0 ( 0 )
 Added by Sylvie Saget
 Publication date 2008
and research's language is English
 Authors Sylvie Saget




Ask ChatGPT about the research

Modeling dialog as a collaborative activity consists notably in specifying the content of the Conversational Common Ground and the kind of social mental state involved. In previous work (Saget, 2006), we claim that Collective Acceptance is the proper social attitude for modeling Conversational Common Ground in the particular case of goal-oriented dialog. In this paper, a formalization of Collective Acceptance is shown, besides elements in order to integrate this attitude in a rational model of dialog are provided; and finally, a model of referential acts as being part of a collaborative activity is presented. The particular case of reference has been chosen in order to exemplify our claims.



rate research

Read More

Goal-oriented dialogue systems typically rely on components specifically developed for a single task or domain. This limits such systems in two different ways: If there is an update in the task domain, the dialogue system usually needs to be updated or completely re-trained. It is also harder to extend such dialogue systems to different and multiple domains. The dialogue state tracker in conventional dialogue systems is one such component - it is usually designed to fit a well-defined application domain. For example, it is common for a state variable to be a categorical distribution over a manually-predefined set of entities (Henderson et al., 2013), resulting in an inflexible and hard-to-extend dialogue system. In this paper, we propose a new approach for dialogue state tracking that can generalize well over multiple domains without incorporating any domain-specific knowledge. Under this framework, discrete dialogue state variables are learned independently and the information of a predefined set of possible values for dialogue state variables is not required. Furthermore, it enables adding arbitrary dialogue context as features and allows for multiple values to be associated with a single state variable. These characteristics make it much easier to expand the dialogue state space. We evaluate our framework using the widely used dialogue state tracking challenge data set (DSTC2) and show that our framework yields competitive results with other state-of-the-art results despite incorporating little domain knowledge. We also show that this framework can benefit from widely available external resources such as pre-trained word embeddings.
Automatic speech recognition (ASR) via call is essential for various applications, including AI for contact center (AICC) services. Despite the advancement of ASR, however, most publicly available call-based speech corpora such as Switchboard are old-fashioned. Also, most existing call corpora are in English and mainly focus on open domain dialog or general scenarios such as audiobooks. Here we introduce a new large-scale Korean call-based speech corpus under a goal-oriented dialog scenario from more than 11,000 people, i.e., ClovaCall corpus. ClovaCall includes approximately 60,000 pairs of a short sentence and its corresponding spoken utterance in a restaurant reservation domain. We validate the effectiveness of our dataset with intensive experiments using two standard ASR models. Furthermore, we release our ClovaCall dataset and baseline source codes to be available via https://github.com/ClovaAI/ClovaCall.
Existing benchmarks used to evaluate the performance of end-to-end neural dialog systems lack a key component: natural variation present in human conversations. Most datasets are constructed through crowdsourcing, where the crowd workers follow a fixed template of instructions while enacting the role of a user/agent. This results in straight-forward, somewhat routine, and mostly trouble-free conversations, as crowd workers do not think to represent the full range of actions that occur naturally with real users. In this work, we investigate the impact of naturalistic variation on two goal-oriented datasets: bAbI dialog task and Stanford Multi-Domain Dataset (SMD). We also propose new and more effective testbeds for both datasets, by introducing naturalistic variation by the user. We observe that there is a significant drop in performance (more than 60% in Ent. F1 on SMD and 85% in per-dialog accuracy on bAbI task) of recent state-of-the-art end-to-end neural methods such as BossNet and GLMP on both datasets.
Dialogue research tends to distinguish between chit-chat and goal-oriented tasks. While the former is arguably more naturalistic and has a wider use of language, the latter has clearer metrics and a straightforward learning signal. Humans effortlessly combine the two, for example engaging in chit-chat with the goal of exchanging information or eliciting a specific response. Here, we bridge the divide between these two domains in the setting of a rich multi-player text-based fantasy environment where agents and humans engage in both actions and dialogue. Specifically, we train a goal-oriented model with reinforcement learning against an imitation-learned ``chit-chat model with two approaches: the policy either learns to pick a topic or learns to pick an utterance given the top-K utterances from the chit-chat model. We show that both models outperform an inverse model baseline and can converse naturally with their dialogue partner in order to achieve goals.
We propose a novel methodology to address dialog learning in the context of goal-oriented conversational systems. The key idea is to quantize the dialog space into clusters and create a language model across the clusters, thus allowing for an accurate choice of the next utterance in the conversation. The language model relies on n-grams associated with clusters of utterances. This quantized-dialog language model methodology has been applied to the end-to-end goal-oriented track of the latest Dialog System Technology Challenges (DSTC6). The objective is to find the correct system utterance from a pool of candidates in order to complete a dialog between a user and an automated restaurant-reservation system. Our results show that the technique proposed in this paper achieves high accuracy regarding selection of the correct candidate utterance, and outperforms other state-of-the-art approaches based on neural networks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا