Do you want to publish a course? Click here

Method of Linear Invariants for description of beam dynamics of FEL undulator

199   0   0.0 ( 0 )
 Added by Andrey Angelow
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a new model for description of electrons beam dynamics in Free Electron Laser (FEL) undulator, based on the method of linear time-dependent invariants of quantum-mechanical charge particle. The magnetic field has periodic structure along the undulator. For this problem, described by time-dependent quadratic Hamiltonian, we obtain exact solution. The time-evolutions of the tree quantum fluctuations: covariance cov(q,p), var(q) and var(p) for the charge particle in this case are also determined. This research will help to optimize the FEL undulator: for example, using a 2.5 GeV linear electron accelerator it will be possible to emit radiation at 1.5 nm and shorter length. This method could be applicable also to any device with periodic structure of applied field (e.g. Tokamak, cyclic accelerators) for the case of charge non-relativistic quantum particles.



rate research

Read More

Initial studies of a 2-colour FEL amplifier using one monoenergetic electron beam are presented. The interaction is modelled using the unaveraged, broadband FEL code Puffin. A series of undulator modules are tuned to generate two resonant frequencies along the FEL interaction and a self-consistent 2-colour FEL interaction at widely spaced non-harmonic wavelengths at 1nm and 2.4nm is demonstrated.
In the baseline design of the International Linear Collider (ILC) an undulator-based source is foreseen for the positron source in order to match the physics requirements. The baseline parameters are optimized for the ILC at sqrt(s)=500 GeV, that means an electron drive beam of 250 GeV. Precision measurements in the Higgs sector, however, require measurements at sqrt(s)=250 GeV, i.e. running with the electron drive beam only at 125 GeV, which imposes a challenge for achieving a high yield. Therefore the baseline undulator parameters have to be optimized as much as possible within their technical performances. In this bachelor thesis we therefore present a theoretical study on the radiation spectra of a helical undulator, based on the equation for the radiated synchrotron energy spectral density per solid angle per electron in the relativistic, far-field and point-like charge approximation. From this starting point the following undulator properties are examined: the deposited power in the undulator vessel, which can disrupt the functionality of the undulator magnets, the protective property of a mask on this disturbances and the number of positrons produced by the synchrotron radiation in a Ti6Al4V target. Those quantities were evaluated for various values for parameters as undulator period, undulator length and magnetic flux in order to find optimal baseline parameter sets for sqrt(s)=250 GeV.
The undulator line of the Shanghai soft X-ray Free-electron Laser facility (SXFEL) has very tight tolerances on the straightness of the electron beam trajectory. However, the beam trajectory cannot meet the lasing requirements due to the influence of beam position, launch angle and quadrupole offsets. Traditional mechanical alignment can only control the rms of offsets to about 100 $mu$m, which is far from reaching the requirement. Further orbit correction can be achieved by beam-based alignment (BBA) method based on electron energy variations. K modulation is used to determine whether the beam passes through the quadrupole magnetic center, and the Dispersion-Free Steering (DFS) method is used to calculate the offsets of quadrupole and BPM. In this paper, a detailed result of simulation is presented which demonstrates that the beam trajectory with rms and standard deviation ($sigma$) less than 10 $mu$m can be obtained.
71 - W. Herr 2016
Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings.
We analyze the effect of a dissipative bosonic environment on the Landau-Zener-Stuckelberg-Majorana (LZSM) level crossing model by using a microscopic approach to derive the relevant master equation. For an environment at zero temperature and weak dissipation our microscopic approach confirms the independence of the survival probability on the decay rate that has been predicted earlier by the simple phenomenological LZSM model. For strong decay the microscopic approach predicts a notable increase of the survival probability, which signals dynamical decoupling of the initial state. Unlike the phenomenological model our approach makes it possible to study the dependence of the system dynamics on the temperature of the environment. In the limit of very high temperature we find that the dynamics is characterized by a very strong dynamical decoupling of the initial state - temperature-induced quantum Zeno effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا