No Arabic abstract
The superspace geometry relevant to the heterotic string is reviewed from the point of view of the off-shell supermultiplet structure of $N=1,d=10$ supergravity. The anomaly-modified seven-form Bianchi identity is analysed at order $a^3$ and shown to admit a complete solution. The corresponding $a^3$ deformation of the dimension-zero torsion tensor is derived and shown to obey the appropriate cohomological constraint.
Using the superspace formulation for the 5D N = 1 Weyl supermultiplet developed in arXiv:0802.3953, we elaborate the concept of conformally flat superspace in five dimensions. For a large family of supersymmetric theories (including sigma-models and Yang-Mills theories) in the conformally flat superspace, we describe an explicit procedure to formulate their dynamics in terms of rigid 4D N = 1 superfields. The case of 5D N = 1 anti-de Sitter superspace is discussed as an example.
Inspired by superstring field theory, we study differential, integral, and inverse forms and their mutual relations on a supermanifold from a sheaf-theoretical point of view. In particular, the formal distributional properties of integral forms are recovered in this scenario in a geometrical way. Further, we show how inverse forms extend the ordinary de Rham complex on a supermanifold, thus providing a mathematical foundation of the Large Hilbert Space used in superstrings. Last, we briefly discuss how the Hodge diamond of a supermanifold looks like, and we explicitly compute it for super Riemann surfaces.
We classify the simply-connected supersymmetric parallelisable backgrounds of heterotic supergravity. They are all given by parallelised Lie groups admitting a bi-invariant lorentzian metric. We find examples preserving 4, 8, 10, 12, 14 and 16 of the 16 supersymmetries.
The maximal supergravity theory in three dimensions, which has local SO(16) and rigid $E_8$ symmetries, is discussed in a superspace setting starting from an off-shell superconformal structure. The on-shell theory is obtained by imposing further constraints. It is essentially a non-linear sigma model that induces a Poincare supergeometry that is described in detail. The possible $p$-form field strengths, for $p=2,3,4$, are explicitly constructed using supersymmetry and $E_8$. The gauged theory is also discussed.
We present a class of smooth supersymmetric heterotic solutions with a non-compact Eguchi-Hanson space. The non-compact geometry is embedded as the base of a six-dimensional non-Kahler manifold with a non-trivial torus fiber. We solve the non-linear anomaly equation in this background exactly. We also define a new charge that detects the non-Kahlerity of our solutions.