No Arabic abstract
Inspired by superstring field theory, we study differential, integral, and inverse forms and their mutual relations on a supermanifold from a sheaf-theoretical point of view. In particular, the formal distributional properties of integral forms are recovered in this scenario in a geometrical way. Further, we show how inverse forms extend the ordinary de Rham complex on a supermanifold, thus providing a mathematical foundation of the Large Hilbert Space used in superstrings. Last, we briefly discuss how the Hodge diamond of a supermanifold looks like, and we explicitly compute it for super Riemann surfaces.
In type II superstring theory, the vacuum amplitude at a given loop order $g$ can receive contributions from the boundary of the compactified, genus $g$ supermoduli space of curves $overline{mathfrak M}_g$. These contributions capture the long distance or infrared behaviour of the amplitude. The boundary parametrises degenerations of genus $g$ super Riemann surfaces. A holomorphic projection of the supermoduli space onto its reduced space would then provide a way to integrate the holomorphic, superstring measure and thereby give the superstring vacuum amplitude at $g$-loop order. However, such a projection does not generally exist over the bulk of the supermoduli spaces in higher genera. Nevertheless, certain boundary divisors in $partialoverline{mathfrak M}_g$ may holomorphically map onto a bosonic space upon composition with universal morphisms, thereby enabling an integration of the holomorphic, superstring measure here. Making use of ansatz factorisations of the superstring measure near the boundary, our analysis shows that the boundary contributions to the three loop vacuum amplitude will vanish in closed oriented type II superstring theory with unbroken spacetime supersymmetry.
In this note, we first explain the equivalence between the interaction Hamiltonian of Green-Schwarz light-cone gauge superstring field theory and the twist field formalism known from matrix string theory. We analyze the role of the large N limit in matrix string theory, in particular in relation with conformal perturbation theory around the orbifold SCFT that reproduces light-cone string perturbation theory. We show how the scaling with N is directly related to measures on the moduli space of Riemann surfaces. The scaling dimension 3 of the Mandelstam vertex as reproduced by the twist field interaction is in this way related to the dimension 3(h-1) of the moduli space. We analyze the structure and scaling of the higher order twist fields that represent the contact terms. We find one relevant twist field at each order. More generally, the structure of string field theory seems more transparent in the twist field formalism. Finally we also investigate the modifications necessary to describe the pp-wave backgrounds in the light-cone gauge and we interpret a diagram from the BMN limit as a stringy diagram involving the contact term.
We reconstruct a complete type II superstring field theory with L-infinity structure in a symmetric way concerning the left- and right-moving sectors. Based on the new construction, we show again that the tree-level S-matrix agrees with that obtained using the first-quantization method. Not only is this a simple and elegant reconstruction, but it also enables the action to be mapped to that in the WZW-like superstring field theory, which has not yet been constructed and fills the only gap in the WZW-like formulation.
The descent relations between string field theory (SFT) vertices are characteristic relations of the operator formulation of SFT and they provide self-consistency of this theory. The descent relations <V_2|V_1> and <V_3|V_1> in the NS fermionic string field theory in the kappa and discrete bases are established. Different regularizations and schemes of calculations are considered and relations between them are discussed.
We propose a dimensional regularization scheme to deal with the divergences caused by colliding supercurrents inserted at the interaction points, in the light-cone gauge NSR superstring field theory. We formulate the theory in $d$ dimensions and define the amplitudes as analytic functions of $d$. With an appropriately chosen three-string interaction term and large negative $d$, the tree level amplitudes for the (NS,NS) closed strings can be recast into a BRST invariant form, using the superconformal field theory proposed in Ref.[arXiv:0911.3704]. We show that in the limit $d to 10$ they coincide with the results of the first quantized theory. Therefore we obtain the desired results without adding any contact interaction terms to the action.