Do you want to publish a course? Click here

Convergence of the Eilenberg-Moore spectral sequence for generalized cohomology theories

220   0   0.0 ( 0 )
 Added by Tilman Bauer
 Publication date 2008
  fields
and research's language is English
 Authors Tilman Bauer




Ask ChatGPT about the research

We prove that the Morava-$K$-theory-based Eilenberg-Moore spectral sequence has good convergence properties whenever the base space is a $p$-local finite Postnikov system with vanishing $(n+1)$st homotopy group.



rate research

Read More

Operadic tangent cohomology generalizes the existing theories of Harrison cohomology, Chevalley--Eilenberg cohomology and Hochschild cohomology. These are usually non-trivial to compute. We complement the existing computational techniques by producing a spectral sequence that converges to the operadic tangent cohomology of a fixed algebra. Our main technical tool is that of filtrations arising from towers of cofibrations of algebras, which play the same role cell attaching maps and skeletal filtrations do for topological spaces. As an application, we consider the rational Adams--Hilton construction on topological spaces, where our spectral sequence gives rise to a seemingly new and completely algebraic description of the Serre spectral sequence, which we also show is multiplicative and converges to the Chas--Sullivan loop product. Finally, we consider relative Sullivan--de Rham models of a fibration $p$, where our spectral sequence converges to the rational homotopy groups of the identity component of the space of self-fiber homotopy equivalences of $p$.
We prove the equivalence of several hypotheses that have appeared recently in the literature for studying left Bousfield localization and algebras over a monad. We find conditions so that there is a model structure for local algebras, so that localization preserves algebras, and so that localization lifts to the level of algebras. We include examples coming from the theory of colored operads, and applications to spaces, spectra, and chain complexes.
A multicomplex, also known as a twisted chain complex, has an associated spectral sequence via a filtration of its total complex. We give explicit formulas for all the differentials in this spectral sequence.
98 - Hana Jia Kong 2020
We construct a $C_2$-equivariant spectral sequence for RO$(C_2)$-graded homotopy groups. The construction is by using the motivic effective slice filtration and the $C_2$-equivariant Betti realization. We apply the spectral sequence to compute the RO$(C_2)$-graded homotopy groups of the completed $C_2$-equivariant connective real $K$-theory spectrum. The computation reproves the $C_2$-equivariant Adams spectral sequence results by Guillou, Hill, Isaksen and Ravenel.
Building on work of Livernet and Richter, we prove that E_n-homology and E_n-cohomology of a commutative algebra with coefficients in a symmetric bimodule can be interpreted as functor homology and cohomology. Furthermore we show that the associated Yoneda algebra is trivial.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا